Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T18:39:54.980Z Has data issue: false hasContentIssue false

Superfluous oxygen diffusion induced amorphization of ZrC0.6O0.4 and transformation of amorphous layer under electron beam irradiation

Published online by Cambridge University Press:  06 January 2016

Xiaopu Li
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Wentao Hu*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

On the powder surface of oxygen-ordered ZrC0.6O0.4 obtained via isothermal heating of vacancy-ordered ZrC0.6 at 300 °C, an amorphous ZrC0.6O y>0.4 layer in nanoscaled thickness is found to form if the heating lasts long enough. With the help of high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) measurements, the amorphous formation is recognized to originate from diffusion of superfluous oxygen atoms into Zr-tetrahedral centers in the surface area, thus leading to severe distortion of the lattice. In situ investigation of HRTEM, SAED, and electron energy loss spectra demonstrates that under electron irradiation of sufficient dose, the amorphous ZrC0.6O y>0.4 layer transforms into a cubic ZrO2−x layer with the same orientation as the underlying ordered ZrC0.6O0.4.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pierson, H.O.: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (William Andrew/Noyes, New Jersey, 1996).Google Scholar
Sara, R.V.: The system zirconium-carbon. J. Am. Ceram. Soc. 48, 243247 (1965).CrossRefGoogle Scholar
Toth, L.E.: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
Oyama, S.T.: The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic & Professional, Glasgow, 1996).Google Scholar
Ogawa, T. and Ikawa, K.: Diffusion of metal fission products in zirconium carbide ZrC1 . J. Nucl. Mater. 105, 331334 (1982).CrossRefGoogle Scholar
Rama Rao, G.A. and Venugopal, V.: Kinetics and mechanism of the oxidation of ZrC. J. Alloys Compd. 206, 237242 (1994).CrossRefGoogle Scholar
Shimada, S., Inagaki, M., and Suzuki, M.: Microstructural observation of the ZrC/ZrO2 interface formed by oxidation of ZrC. J. Mater. Res. 11, 25942597 (1996).CrossRefGoogle Scholar
Shimada, S.: Oxidation and mechanism of single crystal carbides with formation of carbon. J. Ceram. Soc. Jpn. 109, S33S42 (2001).CrossRefGoogle Scholar
Shimada, S.: A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics 149, 319326 (2002).Google Scholar
Shimada, S.: TEM observation of the ZrC/ZrO2 interface formed by oxidation of ZrC single crystals. J. Mater. Synth. Process. 6, 191195 (1998).CrossRefGoogle Scholar
Bellucci, A., Gozzi, D., Kimura, T., Noda, T., and Otani, S.: Zirconia growth on zirconium carbide single crystals by oxidation. Surf. Coat. Technol. 197, 294302 (2005).CrossRefGoogle Scholar
Gozzia, D., Montozzi, M., and Cignini, P.L.: Oxidation kinetics of refractory carbides at low oxygen partial pressures. Solid State Ionics 123, 1118 (1999).CrossRefGoogle Scholar
Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., and Illas, F.: Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Phys. Rev. B 72, 075427-1-11 (2005).Google Scholar
Edamoto, K., Nagayama, T., Ozawa, K., and Otani, S.: Angle-resolved and resonant photoemission study of the ZrO-like film on ZrC(100). Surf. Sci. 601, 50775082 (2007).CrossRefGoogle Scholar
Håkansson, K.L., Johansson, H.I.P., and Johansson, L.I.: High-resolution core-level study of ZrC(100) and its reaction with oxygen. Phys. Rev. B 48, 26232626 (1993).Google Scholar
Gusev, A.I.: Order–disorder transformations and phase equilibria in strongly nonstoichiometric compounds. Phys.-Usp. 43, 137 (2000).Google Scholar
Xiang, J.Y., Liu, S.C., Hu, W.T., Zhang, Y., Chen, C.K., Wang, P., He, J.L., Yu, D.L., Xu, B., Lu, Y.F., Tian, Y.J., and Liu, Z.Y.: Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J. Eur. Ceram. Soc. 31, 14911496 (2011).Google Scholar
Hu, W.T., Xiang, J.Y., Zhang, Y., Liu, S.C., Chen, C.K., Wang, P., Wang, H.T., Wen, F.S., Xu, B., He, J.L., Yu, D.L., Tian, Y.J., and Liu, Z.Y.: Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61 . J. Mater. Res. 27, 12301236 (2012).Google Scholar
Hu, W.T., Liu, S.C., Zhang, Y., Chen, C.K., Xiang, J.Y., Wang, P., Wang, H.T., Wen, F.S., Xu, B., He, J.L., Yu, D.L., Tian, Y.J., and Liu, Z.Y.: Low-temperature diffusion of oxygen through ordered carbon vacancies in Zr2C x : The formation of ordered Zr2C x O y . Inorg. Chem. 51, 51645172 (2012).CrossRefGoogle ScholarPubMed
Shimada, S. and Kozeki, M.: Oxidation of TiC at low temperatures. J. Mater. Sci. 27, 18691875 (1992).Google Scholar
Shimada, S. and Ishii, T.: Oxidation kinetics of zirconium carbide at relatively low temperatures. J. Am. Ceram. Soc. 73, 28042808 (1990).CrossRefGoogle Scholar
Singhal, S.C.: Oxidation kinetics of hot-pressed silicon carbide. J. Mater. Sci. 11, 12461253 (1976).CrossRefGoogle Scholar
Reyes-Gasga, J. and García-García, R.: Analysis of the electron-beam radiation damage of TEM samples in the acceleration energy range from 0.1 to 2 MeV using the standard theory for fast electrons. Radiat. Phys. Chem. 64, 359367 (2002).Google Scholar
Takeda, S.: An atomic model of electron-irradiation-induced defects on {113} in Si. Jpn. J. Appl. Phys. 30, L639L642 (1991).CrossRefGoogle Scholar
Teweldebrhan, D. and Balandin, A.A.: Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009).Google Scholar
Thomas, G., Mori, H., Fujita, H., and Sinclair, R.: Electron irradiation induced crystalline amorphous transitions in Ni-Ti alloys. Scr. Mater. 16, 589592 (1982).Google Scholar
Mori, H.: Solid-state amorphization by irradiation. In Current Topics in amorphous Materials: Physics and Technology, Elsevier Science Publishers: Amsterdam, 1997.Google Scholar
Okamoto, P.R., Lam, N.Q., and Rein, L.E.: Physics of Crystal-to-glass transformations. In Solid State Physics: Physics of Crystal-to-Glass Transformations, Vol. 52 (Academic Press, San Diego, 1999).Google Scholar
Jenčič, I., Bench, M.W., Robertson, I.M., and Kirk, M.A.: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974982 (1995).CrossRefGoogle Scholar
Corticelli, F., Lulli, G., and Meili, P.G.: Solid-phase epitaxy of implanted silicon at liquid nitrogen and room temperature induced by electron irradiation in the electron microscope. Philos. Mag. Lett. 60, 101106 (1990).Google Scholar
Elliman, R.G., William, J.S., Maher, D.M., and Brown, W.L.: Kinetics, microstructure and mechanisms of ion beam induced epitaxial crystallization of semiconductors. Mater. Res. Soc. Symp. Proc. 51, 319327 (1985).CrossRefGoogle Scholar
Miyao, M., Polman, A., Sinke, W., Saris, F.W., and van Kemp, R.: Electron irradiation activated low temperature annealing of phosphorus implanted silicon. Appl. Phys. Lett. 48, 11321134 (1986).Google Scholar
Frantz, J., Tarus, J., Nordlund, K., and Keinonen, J.: Mechanism of electron-irradiation-induced recrystallization in Si. Phys. Rev. B 64, 125313 (2001).CrossRefGoogle Scholar
Kern, P., Jäggi, C., Utke, I., Friedli, V., and Michler, J.: Local electron beam induced reduction and crystallization of amorphous titania films. Appl. Phys. Lett. 89, 021902 (2006).Google Scholar
Nagase, T. and Umakoshi, Y.: Electron irradiation induced crystallization of the amorphous phase in Zr-Cu based metallic glasses with various thermal stability. Mater. Trans. 45, 1323 (2004).CrossRefGoogle Scholar
Nagase, T., Nino, A., and Umakoshi, Y.: Phase stability of an amorphous phase against electron irradiation induced crystallization in Fe-based metallic glasses. Mater. Trans. 48, 13401349 (2007).CrossRefGoogle Scholar
Roddatis, V.V., Su, D.S., Beckmann, E., Jentoft, F.C., Braun, U., Kröhnert, J., and Schlögl, R.: The structure of thin zirconia films obtained by self-assembled monolayer mediated deposition: TEM and HREM study. Surf. Coat. Technol. 151–152, 6366 (2002).Google Scholar
Grunes, L.A., Leapman, R.D., Wilker, C.N., Hoffmann, R., and Kunz, A.B.: Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B. 25, 71577173 (1982).Google Scholar
Wang, G., Luo, G., Soo, Y.L., Sabirianov, R.F., Lin, H., Mei, W., Namavar, F., and Cheung, C.: Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia. Phys. Chem. Chem. Phys. 13, 1951719525 (2011).Google Scholar
Gosset, D., Dollé, M., Simeone, D., and Baldinozzi, G., and Thomé, L.: Structural evolution of zirconium carbide under ion irradiation. J. Nucl. Mater. 373, 123129 (2008).CrossRefGoogle Scholar
Edmondson, P.D., Weber, W.J., Namavar, F., and Zhang, Y.: Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 422, 8691 (2011).CrossRefGoogle Scholar
Supplementary material: File

Li and Hu supplementary material

Li and Hu supplementary material 1

Download Li and Hu supplementary material(File)
File 87.6 KB