Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:19:41.077Z Has data issue: false hasContentIssue false

Supercritical antisolvent precipitation: A new technique for preparing submicronic yttrium powders to improve YBCO superconductors

Published online by Cambridge University Press:  31 January 2011

E. Reverchon
Affiliation:
Dipartimento di Ingegneria Chimica e Alimentare, Universitài Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
C. Celano
Affiliation:
Dipartimento di Ingegneria Chimica e Alimentare, Universitài Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
G. Della Porta
Affiliation:
Dipartimento di Ingegneria Chimica e Alimentare, Universitài Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
A. Di Trolio
Affiliation:
INFM e Dipartimento di Fisica, Università di Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
S. Pace
Affiliation:
INFM e Dipartimento di Fisica, Università di Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
Get access

Extract

The solvent, supercritical antisolvent technique (SAS) has been used to produce submicronic particles of yttrium acetate for the synthesis of YBCO superconductors. For this purpose, in a continuous SAS apparatus dimethylsulfoxide (DMSO) as yttrium acetate solvent and supercritical carbon dioxide as antisolvent have been adopted. Experiments have been performed in the pressure range between 70 and 160 bar and for temperatures between 40 and 70 °C. Different concentrations of yttrium acetate in DMSO have also been tested. Various morphologies of yttrium acetate particles have been obtained, having mean particle diameters from 0.1 to 7 μm. At 40 °C and pressures larger than 120 bar, submicronic spherical particles of yttrium acetate of about 0.1 μm diameter and with a narrow particle size distribution have been achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kamiya, H., Kondo, A., Yokoyama, T., Naito, M., Jimbo, G., Nagaya, S., Miyajima, M., and Hirabayashi, I., Advanced Powder Technol. 5, 339 (1994).CrossRefGoogle Scholar
2.Hibino, A. and Watanabe, R., J. Mater. Sci.: Mater. Electron. 1, 13 (1990).Google Scholar
3.Niou, C. S., Ma, Y. T., Li, W. P., Javapour, J., and Murr, L. E., J.Mater. Sci.: Mater. Electron. 3, 181 (1992).Google Scholar
4.Salama, K., Selvamanickam, V., and Lee, D. F., Processing and Properties of High-Tc Superconductors, Vol. 1: Bulk Material, edited by Jin, S. (World Scientific Press, Singapore, 1993), p. 155.CrossRefGoogle Scholar
5.Hoste, S., Vlaeminck, H., De Ryck, P.H., Persyn, F., Mouton, R., and Van der Kelen, G. P., Supercond. Sci. Technol. 1, 239 (1989)CrossRefGoogle Scholar
6.Lo, W., Cardwell, D.A., Dung, S. L., and Barter, R.G., J. Mater. Res. 11, 39 (1996).CrossRefGoogle Scholar
7.Grader, G. S., Machado, D.R., and Semiat, R., J. Mater. Res. 9, 2490 (1994).CrossRefGoogle Scholar
8.Reverchon, E., J. Supercrit. Fluids 5, 256 (1992).CrossRefGoogle Scholar
9.Reverchon, E., AIChE J. 42 (6), 1765 (1996).CrossRefGoogle Scholar
10.Randolph, T.W., Clarke, D. S., Blanch, H.W., and Prausnitz, J.M., Science 239, 387 (1988).CrossRefGoogle Scholar
11.Dumont, T., Barth, D., Corbier, C., Branlant, G., and Perrut, M., Biotechnol. Bioeng. 40, 329 (1992).CrossRefGoogle Scholar
12.Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, C.A., and Frank, E.U., Chem. Eng. News 69, 26 (1991).Google Scholar
13.Macnaughton, S. J. and Foster, N. R., Ind. Eng. Chem. Res. 34, 275 (1995).CrossRefGoogle Scholar
14.Yeo, S-D., Lim, G-B., Debenedetti, P.G., and Bernstein, H., Biotechnol. Bioeng. 41, 341 (1993).CrossRefGoogle Scholar
15.Gallagher, P.M., Coffey, M. P., Krukonis, V. J., and Klasutis, N., Supercritical Fluids Science and Technology, ACS Symp. Series 406 (1989) p. 334.Google Scholar
16.Gallagher, P.M., Coffey, M. P., Krukonis, V. J., and Hillstrom, W.W., J. Supercrit. Fluids 5, 130 (1992).CrossRefGoogle Scholar
17.Dixon, D. J., Johnston, K. P., and Bodmeier, R.A., AIChE J. 39 (1), 127 (1993).CrossRefGoogle Scholar
18.Randolph, T.W., Randolph, A.D., Mebes, M., and Yeung, S., Biotechnol. Progress 9, 429 (1993).CrossRefGoogle Scholar
19.Benedetti, L., Bertucco, A., and Pallado, P., Biotechnol. Bioeng. (1996).Google Scholar
20.Reverchon, E., Donsì, G., and Gorgoglione, D., J. Supercrit. Fluids 6 (4), 241 (1993).CrossRefGoogle Scholar
21.Tom, J.W., Lim, G-B., Debenedetti, P.G., and Prud'homme, R.K., Supercritical Fluid Engineering Science: Fundamentals and Applications, ACS Symp. Series 514 (1993) p. 238.Google Scholar
22.Gallagher, P.M. and Krukonis, V. J., 2nd Int. Symp. on Supercritical Fluids, Boston, edited by McHugh, M.A. (1991) p. 45.Google Scholar