Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:39:05.818Z Has data issue: false hasContentIssue false

Substrate effect on the Young’s modulus measurement of TiO2 nanoribbons by nanoindentation

Published online by Cambridge University Press:  31 January 2011

Terry T. Xu*
Affiliation:
Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The Young’s modulus of single crystalline rutile TiO2 nanoribbons was investigated using nanoindentation. During the experiments, the nanoribbons were laid on three different substrates, including 1 μm thick SiO2 layer on silicon (SiO2/Si), Si(100), and sapphire(0001). Experimental results show the substrates have significant effects on load-indenter displacement curves. To further understand the experimental findings, three-dimensional finite element modeling was carried out to simulate the indentation of nanoribbon-on-substrate systems using ABAQUS. The results show that the receding contact mechanics is a good approximation when describing the contact between the nanoribbon and the substrate. The results also demonstrate that the substrate effect must be carefully considered when performing nanoindentation on one-dimensional nanostructures. Otherwise, the Young’s modulus of the nanostructures could either be overestimated or underestimated. The Young’s modulus is about 360 GPa, comparable to that of bulk TiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
2.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996)CrossRefGoogle Scholar
3.Wang, Z.L.Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295 (2000)3.0.CO;2-B>CrossRefGoogle Scholar
4.Wong, E.W., Sheehan, P.E., Lieber, C.M.Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)CrossRefGoogle Scholar
5.Wen, B.M., Sader, J.E., Boland, J.J.Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101, 175502 (2008)CrossRefGoogle ScholarPubMed
6.Stan, G., Ciobanu, C.V., Parthangal, P.M., Cook, R.F.Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691 (2007)CrossRefGoogle Scholar
7.Ni, H., Li, X.D., Gao, H.S.Elastic modulus of amorphous SiO2 nanowires. Appl. Phys. Lett. 88, 043108 (2006)CrossRefGoogle Scholar
8.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000)CrossRefGoogle ScholarPubMed
9.Mao, S.X., Zhao, M.H., Wang, Z.L.Nanoscale mechanical behavior of individual semiconducting nanobelts. Appl. Phys. Lett. 83, 993 (2003)CrossRefGoogle Scholar
10.Li, X.D., Wang, X.N., Xiong, Q.H., Eklund, P.C.Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982 (2005)CrossRefGoogle ScholarPubMed
11.Oliver, W.C., Pharr, G.M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
12.Bückle, H.The Science of Hardness Testing and its Research Applications (American Society for Materials, OH 1973)Google Scholar
13.Geng, K.B., Yang, F.Q., Grulke, E.A.Nanoindentation of submicron polymeric coating systems. Mater. Sci. Eng., A 479, 157 (2008)CrossRefGoogle Scholar
14.Chen, X., Vlassak, J.J.Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001)CrossRefGoogle Scholar
15.Han, S.M., Saha, R., Nix, W.D.Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006)CrossRefGoogle Scholar
16.Gao, Y.F., Xu, H.T., Oliver, W.C., Pharr, G.M.Effective elastic modulus of film-on-substrate systems under normal and tangential contact. J. Mech. Phys. Solids 56, 402 (2008)CrossRefGoogle Scholar
17.Clifford, C.A., Seah, M.P.Nanoindentation measurement of Young’s modulus for compliant layers on stiffer substrates including the effect of Poisson’s ratios. Nanotechnology 20, 145708 (2009)CrossRefGoogle ScholarPubMed
18.Li, X.D., Bhushan, B.A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002)CrossRefGoogle Scholar
19.Zhao, M.H., Xiang, Y., Xu, J., Ogasawara, N., Chiba, N., Chen, X.Determining mechanical properties of thin films from the loading curve of nanoindentation testing. Thin Solid Films 516, 7571 (2008)CrossRefGoogle Scholar
20.Feng, G., Nix, W.D., Yoon, Y., Lee, C.J.A study of the mechanical properties of nanowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006)CrossRefGoogle Scholar
21.Shu, S.Q., Yang, Y., Fu, T., Wen, C.S., Lu, J.Can Young’s modulus and hardness of wire structural materials be directly measured using nanoindentation? J. Mater. Res. 24, 1054 (2009)CrossRefGoogle Scholar
22.Chen, X., Mao, S.S.Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)CrossRefGoogle ScholarPubMed
23.Amin, S.S., Nicholls, A.W., Xu, T.T.A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007)CrossRefGoogle Scholar
24. MTS G200 Nanoindenter manual. Document No. G2A-13192-0 (2007)Google Scholar
25.Zienkiewicz, O.C.The Finite Element Method (McGraw-Hill, London 1989)Google Scholar
26.Yang, F.Q., Jiang, C.B., Du, W.W., Zhang, Z.Q., Li, S.X., Mao, S.X.Nanomechanical characterization of ZnS nanobelts. Nanotechnology 16, 1073 (2005)CrossRefGoogle Scholar
27.Keer, L.M., Dundurs, J., Tsai, K.C.Problems involving a receding contact between a layer and a half space. J. Appl. Mech. 39, 1115 (1972)CrossRefGoogle Scholar
28.Kauzlarich, J.J., Greenwood, J.A.Contact between a centrally loaded plate and a rigid or elastic base, with application to pivoted pad bearings. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 215, 623 (2001)CrossRefGoogle Scholar
29.Xu, Z.H., Li, X.D.Sample size effect on nanoindentation of micro/nanostructures. Acta Mater. 54, 1699 (2006)CrossRefGoogle Scholar
30.Li, H., Bradt, R.C.The microhardness indentation load size effect in rutile and cassiterite single-crystals. J. Mater. Sci. 28, 917 (1993)CrossRefGoogle Scholar
31.Mayo, M.J., Siegel, R.W., Narayanasamy, A., Nix, W.D.Mechanical-properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990)CrossRefGoogle Scholar