Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T09:11:33.977Z Has data issue: false hasContentIssue false

Study of the preparation and properties of CeO2 single/multiwall hollow microspheres

Published online by Cambridge University Press:  31 January 2011

Youjin Zhang*
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Tao Cheng
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Qixiu Hu
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Zhiyong Fang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Kaidong Han
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Novel slight yellow CeO2single/multiwall hollow microspheres were synthesized by the hydrothermal method without any surfactant and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and x-ray photoelectron spectra (XPS). The results showed that the products were CeO2single/multiwall hollow microspheres, the shells of which were composed of CeO2nanoparticles with a mean size of 70 nm. The effect of the preparation conditions, the reaction temperature, the reaction time, and the molar ratios of urea to Ce(NO3)3·6H2O on the morphology of the products, was investigated. The optimal preparation conditions are determined as follows: the reaction temperature of 230 °C, the reaction time of 6 to 10 h, and the molar ratios of urea to Ce(NO3)3·6H2O of 3:1 to 6:1. The formation mechanism of CeO2single/multiwall hollow microspheres was proposed. The ultraviolet-visible (UV-VIS) diffuse reflectance spectra of the samples were measured. The results showed that the absorption edges of the samples were red-shifted compared with that of bulk CeO2, and that the red-shift of the absorption edges and the yellow of the samples enhanced with increasing the yield of CeO2single/multiwall hollow microspheres. The catalytic activity and the recycling performance of the sample on CO oxidation were tested and the T100%(the temperature at which CO 100% conversion) was 230 °C in the first run and decreased by 270 and 205 °C compared with that of bulk CeO2and CeO2nanocrystal, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Larese, C., Granados, M.L., Galisteo, F.C., Mariscal, R.Fierro, J.L.G.: TWC deactivation by lead: A study of the Rh/CeO2system. Appl. Catal., B. 62, 132 2006Google Scholar
2Jasinski, P., Suzuki, T.Anderson, H.U.: Nanocrystalline undoped ceria oxygen sensor. Sens. Actuators, B 95, 73 2003CrossRefGoogle Scholar
3Laosiripojana, N., Sangtongkitcharoen, W.Assabumrungrat, S.: Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2. Fuel 85, 323 2006CrossRefGoogle Scholar
4Kosynkin, V.D., Arzgatkina, A.A., Ivanov, E.N., Chtoutsa, M.G., Grabko, A.I., Kardapolov, A.V.Sysina, N.A.: The study of process production of polishing powder based on cerium dioxide. J. Alloy. Compd. 303–304, 421 2000CrossRefGoogle Scholar
5Patsalas, P., Logothetidis, S.Metaxa, C.: Optical performance of nanocrystalline transparent ceria films. Appl. Phys. Lett. 81, 466 2002CrossRefGoogle Scholar
6Wang, Y.R., Mori, T., Li, J.G.Drennan, J.: Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3-doped CeO2ceramics. J. Eur. Ceram. Soc. 25, 949 2005CrossRefGoogle Scholar
7Purohit, R.D., Saha, S.Tyagi, A.K.: Nanocrystalline ceria powders through citrate-nitrate combustion. J. Nanosci. Nanotechnol. 6, 209 2006CrossRefGoogle ScholarPubMed
8Sathyamurthy, S., Leonard, K.J., Dabestani, R.T.Paranthaman, M.P.: Reverse micellar synthesis of cerium oxide nanoparticles. Nanotechnology. 16, 1960 2005CrossRefGoogle Scholar
9Bai, J.Y., Xu, Z.D., Zheng, Y.F.Yin, H.Y.: Shape control of CeO2nanostructure materials in microemulsion systems. Mater. Lett. 60, 1287 2006CrossRefGoogle Scholar
10Ohno, H., Sakurai, K., Tagui, K., Morita, T., Suzuki, S., Ishibashi, K.Yamamoto, Y.: Chemical vapor deposition of CeO2films using a liquid metallorganic source. Electrochem. Solid State Lett. 9, G87 2006CrossRefGoogle Scholar
11Chen, H.L., Zhu, H.Y., Wang, H., Dong, L.Zhu, J.J.: Sonochemical fabrication and characterization of ceria (CeO2) nanowires. J. Nanosci. Nanotechnol. 6, 157 2006Google Scholar
12Tang, B., Zhuo, L.H., Ge, J.C., Wang, G.L., Shi, Z.Q.Niu, J.Y.: A surfactant-free route to single-crystalline CeO2nanowires. Chem. Commun.3565 2005Google Scholar
13Tang, C.C., Bando, Y., Liu, B.D.Golberg, D.: Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Adv. Mater. 17, 3005 2005Google Scholar
14Han, W.Q., Wu, L.J.Zhu, Y.M.: Formation and oxidation state of CeO2−xnanotubes. J. Am. Chem. Soc. 127, 12814 2005Google Scholar
15Sun, C.W., Li, H., Zhang, H.R., Wang, Z.X.Chen, L.Q.: Controlled synthesis of CeO2nanorods by a solvothermal method. Nanotechnology. 16, 1454 2005Google Scholar
16Vantomme, A., Yuan, Z.Y., Du, G.H.Su, B.L.: Surfactant-assisted large-scale preparation of crystalline CeO2nanorods. Langmuir. 21, 1132 2005CrossRefGoogle Scholar
17Mai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C.Yan, C.H.: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109, 24380 2005CrossRefGoogle ScholarPubMed
18Yang, S.W.Gao, L.: Controlled synthesis and self-assembly of CeO2nanocubes. J. Am. Chem. Soc. 2006, Published on Web 07/01/2006Google Scholar
19Shen, W.H., Dong, X.P., Zhu, Y.F., Chen, H.R.Shi, J.L.: Mesoporous CeO2and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Microporous Mesoporous Mat. 85, 157 2005CrossRefGoogle Scholar
20Brezesinski, T., Smarsly, B., Groenewolt, M., Antonietti, M., Grosso, D., Boissiere, C.Sanchez, C.: The generation of mesoporous CeO2with crystalline pore walls using novel block copolymer templates. Stud. Surf. Sci. Catal. 156, 243 2005CrossRefGoogle Scholar
21Zhang, X.Y., Wang, T.W., Jiang, W.Q., Wu, D., Liu, L.Duan, A.H.: Preparation and characterization of three-dimensionally ordered crystalline macroporous CeO2. Chin. Chem. Lett. 16, 1109 2005Google Scholar
22He, Y.J.: Nanostructured CeO2microspheres synthesized by a novel surfactant-free emulsion. Powder Technol. 155, 1 2005Google Scholar
23Sun, X.M., Liu, J.F.Li, Y.D.: Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 12, 2039 2006CrossRefGoogle ScholarPubMed
24JCPDS Card No. 81-0792Google Scholar
25Sinha, A.K.Suzuki, K.: Preparation and characterization of novel mesoporous ceria-titania. J. Phys. Chem. B 109, 1708 2005CrossRefGoogle ScholarPubMed
26Peng, Q., Dong, Y.J.Li, Y.D.: ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. Engl. 42, 3027 2003Google Scholar
27Zhang, Y.G., Wang, S.T., Wang, X., Qian, Y.T.Zhang, Z.D.: Assembled CuO hollow spheres from nanoparticles. J. Nanosci. Nanotechnol. 6, 1423 2006CrossRefGoogle ScholarPubMed
28Bamwenda, G.R.Arakawa, H.: Cerium dioxide as a photocatalyst for water decomposition to O2in the presence of Ce4q and Fe3q species. J. Mol. Catal. A-Chem. 161, 105 2000CrossRefGoogle Scholar
29Chen, H.I.Chang, H.Y.: Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation. Solid State Commun. 133, 593 2005Google Scholar
30Oshiro, K., Akai, K.Matsuura, M.: Size dependence of polaronic effects on an exciton in a spherical quantum dot. Phys. Rev. B. 59, 10850 1999CrossRefGoogle Scholar
31Zou, B.S., Xiao, L.Z., Li, T.J., Zhao, J.L., Lai, Z.Y.Gu, S.W.: Absorption red shift in TiO2ultrafine particles with surfacial dipole layer. Appl. Phys. Lett. 59, 1826 1991Google Scholar
32Zou, B.S.: Interfacial polaron in quantum dots and stearate coated TiO2nanoparticles. Asian J. Spectrosc. 6, 1 2002Google Scholar
33Deshmukh, S.S., Zhang, M.H., Kovalchuk, V.I.d’Itri, J.L.: Effect of SO2on CO and C3H6oxidation over CeO2and Ce0.75Zr0.25O2. Appl. Catal., B. 45, 135 2003Google Scholar
34Rangaraj, S.S.Sarojini, D.: CO oxidation activity of Cu–CeO2nano-composite catalysts prepared by laser vaporization and controlled condensation. J. Nanopart. Res. 8, 497 2006Google Scholar
35Kang, M., Song, M.W.Lee, C.H.: Catalytic carbon monoxide oxidation over: CoOx/CeO2composite catalysts. Appl. Catal. A 251, 143 2003CrossRefGoogle Scholar
36Tang, X.L., Zhang, B.C., Li, Y., Xu, Y.D., Xin, Q.Shen, W.J.: Carbon monoxide oxidation over CuO/CeO2catalysts. Catal. Today 93–95, 191 2004Google Scholar