Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:58:04.406Z Has data issue: false hasContentIssue false

A study of silicide formation from LPCVD-tungsten films: Film texture and growth kineticsa

Published online by Cambridge University Press:  31 January 2011

S-L. Zhang
Affiliation:
Swedish Institute of Microelectronics, P.O. Box 1084, S-164 21 Kista, Sweden, and The Royal Institute of Technology–Electrum, Solid State Electronics, P.O. Box 1298, S–164 28 Kista, Sweden
R. Buchta
Affiliation:
Swedish Institute of Microelectronics, P.O. Box 1084, S–164 21 Kista, Sweden
M. Östling
Affiliation:
The Royal Institute of Technology-Electrum, Solid State Electronics, P.O. Box 1298, S–164 28 Kista, Sweden
Get access

Abstract

Tungsten disilicide (WSi2) was formed by annealing tungsten (W) films of 330 nm and 750 nm prepared by low pressure chemical vapor deposition (LPCVD) from tungsten hexafluoride (WF6) on Czochralski 〈100〉-Si substrates. The silicide was found to grow continuously from the WSi2/W interface. The thickness of the formed WSi2 was observed by Rutherford backscattering measurements (RBS) to increase parabolically with the annealing time, with an activation energy of 2.6 eV/atom. The crystal structure of the formed WSi2 and the unreacted W films was analyzed using x-ray diffraction (XRD) technique. The thermal history of the samples was found to play an important role for the film texture of the unreacted W and formed WSi2, indicating that the fast and inexpensive method, XRD, applied as a thickness monitor for kinetics studies of WSi2 growth will undoubtedly introduce large errors. The as-deposited W (on Si) and the unreacted W (on WSi2) were found to be under a tensile stress, as observed by means of the XRD technique.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Locker, L.D. and Capio, CD., J. Appl. Phys. 44, 4366 (1973).CrossRefGoogle Scholar
2.Borders, J. A. and Sweet, J. N., in Applications of Ion Beams to Metals, edited by Picraux, S.T., EerNisse, E.P., and Vook, F.L. (Plenum Press, New York, 1974), p. 179.CrossRefGoogle Scholar
3.Lajzerowicz, J., Torres, J., Goeltz, G., and Pantel, R., Thin Solid Films 140, 23 (1986).CrossRefGoogle Scholar
4.Suguro, K., Nakasaki, Y., Shima, S., Yoshii, T., Moriya, T., and Tango, H., J. Appl. Phys. 62, 1265 (1987).CrossRefGoogle Scholar
5.Ma, E., Lim, B.S., Nicolet, M-A., AM, N.S., and Hamdi, A.H., Electron, J.. Mater. 17, 207 (1988).Google Scholar
6.Lee, H. S. and Wolga, G. J., J. Electrochem. Soc. 137, 684 (1990).CrossRefGoogle Scholar
7.Silversmith, D. J., Rathman, D. D., and Mountain, R. W., Thin Solid Films 93, 413 (1982).CrossRefGoogle Scholar
8.Göltz, G., Torres, J., Lajzerowicz, J., and Bomchil, G., Thin Solid Films 124, 19 (1985).CrossRefGoogle Scholar
9.Bomchil, G., Goeltz, G., and Torres, J., Thin Solid Films 140, 59 (1986).CrossRefGoogle Scholar
10.Blewer, R. S. and Tracy, M. E., in Tungsten and Other Refractory Metals for VLSI Applications I, edited by Blewer, R. S. (Mater. Res. Soc. Symp. Proc. No. V-l, Pittsburgh, PA, 1986), pp. 5362.Google Scholar
11.Pauleau, Y., Dassapa, F. C., Lami, Ph., Oberlin, J. C., and Romagna, F., J. Mater. Res. 4, 156 (1989).CrossRefGoogle Scholar
12.Thomas, O., Charai, A., d'Heurle, F. M., Finstad, T. G., and Joshi, R. V., Thin Solid Films 171, 343 (1989).CrossRefGoogle Scholar
13.Lee, H. S. and Wolga, G. J., J. Electrochem. Soc. 137, 2618 (1990).CrossRefGoogle Scholar
14.Zhang, S-L., Smith, U., Buchta, R., and Ostling, M., J. Appl. Phys. 69, 217 (1991).Google Scholar
15.Broadbent, E. K. and Rammer, C.L., J. Electrochem. Soc. 131, 1427 (1984).CrossRefGoogle Scholar
16.Green, M. L. and Levy, R.A., J. Electrochem. Soc. 132, 1243 (1985).CrossRefGoogle Scholar
17.Carlsson, J-O. and Boman, M., J. Vac. Sci. Technol. A3, 2298 (1985).CrossRefGoogle Scholar
18.Carlsson, J-O. and Hårsta, A., Thin Solid Films 158, 107 (1988).CrossRefGoogle Scholar
19.Kern, W. and Ban, V. S., in Thin Film Processes, edited by Vossen, J.L. and Kern, W. (Academic Press, New York, 1978), p. 258.Google Scholar
20.Cullity, B.D., Elements ofX-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), p. 513.Google Scholar
21.Nicolet, M-A. and Lau, S. S., in VLSI Electronics Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), Vol. 6, p. 408.Google Scholar
22.Nicolet, M-A. and Lau, S. S., in VLSI Electronics Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), Vol. 6, p. 329.Google Scholar
23.Gage, P. R. and Bartlett, R. W., TMS-AIME 233, 832 (1965).Google Scholar
24.Baglin, J., d'Heurle, F., and Petersson, S. C., Appl. Phys. Lett. 33, 289 (1978).CrossRefGoogle Scholar
25.Baglin, J., Dempsey, J., Hammer, W., d'Heurle, F., Petersson, S. C., and Serrano, C., J. Electron. Mater. 8, 641 (1979).CrossRefGoogle Scholar
26.Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), pp. 292293.Google Scholar
27. Standard JCPDS diffraction pattern 4–806 (Body-centeredcubic W).Google Scholar
28.Kamins, T.I., Bradbury, D.R., Cass, T.R., Laderman, S.S., and Reid, G.A., J. Electrochem. Soc. 133, 2555 (1986).CrossRefGoogle Scholar
29.Zhang, S-L., Buchta, R., and Östling, M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 173.Google Scholar
30.Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), Chap. 11.Google Scholar
31. Standard JCPDS diffraction pattern 11–195 (Tetragonal WSi2).Google Scholar
32.Shioya, Y., Ikegami, K., Maeda, M., and Yanagida, K., J. Appl. Phys. 61, 561 (1987).CrossRefGoogle Scholar