Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T11:24:02.989Z Has data issue: false hasContentIssue false

A study of ruthenium ultrathin film nucleation on pretreated SiO2 and Hf–silicate dielectric surfaces

Published online by Cambridge University Press:  31 January 2011

Filippos Papadatos
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State University of New York, Albany, New York 12203
Steven Consiglio
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State University of New York, Albany, New York 12203
Spyridon Skordas
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State University of New York, Albany, New York 12203
Eric T. Eisenbraun
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State University of New York, Albany, New York 12203
Alain E. Kaloyeros*
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany-State University of New York, Albany, New York 12203
*
a)Present address: IBM Microelectronics, Hopewell Junction, NY 12533.
Get access

Abstract

This study explored the effects of substrate surface pretreatments on the nucleation and growth of metal–organic chemical vapor deposited ruthenium. In situ plasma (dry), featuring O2, Ar, and H2/Ar chemistries, and ex situ (wet) treatments, consisting of a standard RCA bath, were examined in the nucleation and growth of up to 50-nm-thick metallic Ru films on SiO2 and Hf–silicate surfaces. The resulting surface morphology, grain size, and roughness of the metallic films were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM), while Rutherford backscattering spectrometry (RBS) was used for compositional measurements. It was determined that an in situ plasma treatment using a H2/Ar yielded metallic Ru films with the highest nucleation density, smallest grain size, and lowest resistivity. Film buckling was also observed for the Ru films deposited on H2/Ar pretreated surfaces. The behavior was attributed to the presence of compressive strain. The films deposited on RCA-cleaned and Ar plasma treated surfaces exhibited very similar physical and electrical characteristics to the films grown on untreated substrates. Alternatively, the use of O2 plasma surface treatment adversely affected Ru nucleation on the SiO2 surface. Relevant mechanisms for Ru nucleation and growth on SiO2 and Hf–silicate nontreated surfaces are discussed in the context of the various predeposition dry and wet treatments.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J.Brasen, D.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc. 132, 2677 1985CrossRefGoogle Scholar
2Joo, J-H., Seon, J-M., Jeon, Y-C., Oh, K-Y., Roh, J-S., Kim, J-J.Choi, J.T.: Investigation of ruthenium electrodes for (Ba,Sr)TiO3 thin films. Jpn. J. Appl. Phys. 37, 3396 1998CrossRefGoogle Scholar
3Choi, E-S., Lee, J-C., Hwang, J.S.Yoon, S.G.: Bottom electrode structures of Pt/RuO2/Ru on polycrystalline silicon for low temperature (Ba,Sr)TiO3 thin film deposition. Jpn. J. Appl. Phys. 38, 5317 1999Google Scholar
4Chen, B., Jha, R., Lazar, H., Biswas, N., Lee, J., Lee, B., Wielunski, L., Garfunkel, E.Misra, V.: Influence of oxygen diffusion through capping layers of low work function metal gate electrodes. IEEE Electron. Dev. Lett. 27(4), 228 2006CrossRefGoogle Scholar
5Yunogami, T.Nojiri, K.: Anisotropic etching of RuO2 and Ru with high aspect ratio for gigabit dynamic random-access memory. J. Vac. Sci. Technol., B 18(4), 1911 2000CrossRefGoogle Scholar
6Zhang, Z., Song, S.C., Huffman, C., Hussain, M.M., Barnett, J., Moumen, N., Alshareef, H.N., Majhi, P., Sim, J.H., Bae, S.H.Lee, B.H.: Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process. Electrochem. Solid State Lett. 8(10), G271 2005CrossRefGoogle Scholar
7Zhong, H., Heuss, G.Misra, V.: Electrical properties of RuO2 gate electrodes for dual metal gate Si-CMOS. IEEE Electr. Dev. Lett. 21, 593 2000CrossRefGoogle Scholar
8Zhong, H., Heuss, G., Misra, V., Luan, H., Lee, C-H.Kwong, D-L.: Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics. Appl. Phys. Lett. 78(8), 1134 2001CrossRefGoogle Scholar
9Zhong, H., Heuss, G., Suh, Y-S., Hong, S-N., Misra, V., Kelly, J.Parsons, G.: Promising gate stack with Ru and RuO2 gate electrodes and Y2O3 gate dielectric in Gate Stack and Silicide Issues in Silicon Processing II,, edited by S.A. Campbell, L.A. Clevenger, P.B. Griffin, and C.C. Hobbs (Mater. Res. Soc. Symp. Proc. 670, 2002) K3.1CrossRefGoogle Scholar
10Papadatos, F., Consiglio, S., Skordas, S., Kaloyeros, A.Eisenbraun, E.: Integration studies of MOCVD-grown Ru and RuO2 with HfO2-based gate dielectrics for advanced CMOS applications. Proceedings of Semiconductor Research Corporation TECHON conference,2003Google Scholar
11Wen, H-C., Lysaght, P., Alshareef, H.N., Huffman, C., Harris, H.R., Choi, K., Senzaki, Y., Luan, H., Majhi, P., Lee, B.H., Campin, M.J., Foran, B., Lian, G.D.Kwong, D-L.: Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics. J. Appl. Phys. 98, 043520 2005CrossRefGoogle Scholar
12Dey, S.K., Goswami, J.Gu, D.: Ruthenium films by digital chemical vapor deposition: Selectivity, nanostructure, and work function. Appl. Phys. Lett. 84(9), 1606 2004CrossRefGoogle Scholar
13Suh, Y-S., Lazar, H., Chen, B., Lee, J-H.Misra, V.: Electrical characteristics of HfO2 dielectrics with Ru metal gate electrodes. J. Electrochem. Soc. 152, F138 2005CrossRefGoogle Scholar
14De, I., Johri, D., Srivastava, A.Osburn, C.M.: Impact of gate work function on device performance at the 50 nm technology node. Solid–State Electronics 44, 1077 2000CrossRefGoogle Scholar
15The International Technology Roadmap for Semiconductors 2005 EditionSemiconductor Industry Association Santa Clara, CA 2005Google Scholar
16Wilk, G.D., Wallace, R.M.Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243 2001CrossRefGoogle Scholar
17Gusev, E.P., Narayanan, V.Frank, M.M.: Advanced high-dielectric stacks with poly-Si and metal gates: Recent progress and current challenges. IBM J. Res. Dev. 50(4/5), 287 2006Google Scholar
18Wong, H.Iwai, H.: On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1876 2006CrossRefGoogle Scholar
19Papadatos, F., Consiglio, S., Skordas, S., Eisenbraun, E.T.Kaloyeros, A.E.: Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications. J. Mater. Res. 19, 2947 2004CrossRefGoogle Scholar
20Ganesan, P.G., Eizenberg, M.Dornfest, C.: Chemical vapor deposited RuOx films—effect of oxygen flow rate. J. Electrochem. Soc. 149(9), G510 2002CrossRefGoogle Scholar
21Shibutami, T., Kawano, K., Oshima, N., Yokoyama, S.Funakubo, H.: Ruthenium film with high nuclear density deposited by MOCVD using a novel liquid precursor. Electrochem. Solid State Lett. 6, C117 2003CrossRefGoogle Scholar
22Aoyama, T.Eguchi, K.: Ruthenium films prepared by liquid source chemical vapor deposition using Bis-(ethylcyclopentadienyl)ruthenium. J. Appl. Phys. 38, L1134 1999CrossRefGoogle Scholar
23Matsui, Y., Hiratani, M., Nabatame, T., Shimamoto, Y.Kimura, S.: Growth mechanism of Ru films prepared by chemical vapor deposition using bis(ethylcyclopentadienyl)ruthenium precursor. Electrochem. Solid State Lett. 4, C9 2001CrossRefGoogle Scholar
24Goswami, I.Laxman, R.: Transition metals show promise as copper barriers. Semicon. Int. 27(5), 49 2004Google Scholar
25Maiti, B.Tobin, P.J.: Metal gates for advanced CMOS technology in Microelectronic Device Technology III,, edited by D. Burnett and T. Tsuchiya (Proceedings of SPIE, Santa Clara, CA 3881, 1999)CrossRefGoogle Scholar
26Pauleau, Y.: Deposition and Processing of Thin Films, edited by H.S. Nalwa Academic Press 2002 Vol. 1, 455Google Scholar
27Consiglio, S., Papadatos, F., Naczas, S., Skordas, S., Eisenbraun, E.T.Kaloyeros, A.E.: Metalorganic chemical vapor deposition of hafnium silicate thin films using a dual source dimethyl-alkylamido approach. J. Electrochem. Soc. 153, F249 2006CrossRefGoogle Scholar
28Kern, W.: Cleaning solutions based on hydrogen peroxide. RCA Rev. 31, 207 1970Google Scholar
29Kern, W.: Handbook of Semiconductor Wafer Cleaning Technology Noyes Publications Park Ridge, NJ 1993Google Scholar
30Lüth, H.: Solid Surfaces, Interfaces and Thin Films Springer 2001CrossRefGoogle Scholar
31Kumomi, H.Shi, F.G.: Deposition and Processing of Thin Films, edited by H.S. Nalwa Academic Press 2002 Vol. 1, 362Google Scholar
32Aoyama, T.Eguchi, K.: Ruthenium films prepared by liquid source chemical vapor deposition using Bis-(ethylcyclopentadienyl)ruthenium. J. Appl. Phys. 38, L1134 1999CrossRefGoogle Scholar
33Park, S-E., Kim, H-M., Kim, K-B.Min, S-H.: A novel process to improve the surface roughness of RuO2 film deposited by metallorganic chemical vapor deposition. Electrochem. Solid State Lett. 1(6), 262 1998Google Scholar
34Tinoco, J.C., Estrada, M.Romero, G.: Room temperature plasma oxidation mechanism to obtain ultrathin silicon oxide and titanium oxide layers. Microelectron. Reliab. 43, 895 2003CrossRefGoogle Scholar
35Choi, Y.W.Ahn, B.T.: A study on the oxidation kinetics of silicon in inductively coupled oxygen plasma. J. Appl. Phys. 86(7), 4004 1999CrossRefGoogle Scholar
36Park, Y-B.Rhee, S-W.: Effect of hydrogen plasma precleaning on the removal of interfacial amorphous layer in the chemical vapor deposition of microcrystalline silicon films on silicon oxide surface. Appl. Phys. Lett. 68(16), 2219 1996CrossRefGoogle Scholar
37Jang, T.W., Rhee, H.S.Ahn, B.T.: Hydrogen plasma pretreatment effect on the deposition of aluminum thin films from metalorganic chemical vapor deposition using dimethylethylamine alane. J. Vac. Sci. Technol., A 17(3), 1031 1999CrossRefGoogle Scholar