Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:59:02.972Z Has data issue: false hasContentIssue false

A study of 2 MeV oxygen implantation to form deeply buried SiO2 layers

Published online by Cambridge University Press:  31 January 2011

J. J. Grob
Affiliation:
Centre de Recherches Nucleaires, Laboratoire PHASE, B.P.20, F-67037 Strasbourg, France
A. Grob
Affiliation:
Centre de Recherches Nucleaires, Laboratoire PHASE, B.P.20, F-67037 Strasbourg, France
P. Thevenin
Affiliation:
Centre de Recherches Nucleaires, Laboratoire PHASE, B.P.20, F-67037 Strasbourg, France
P. Siffert
Affiliation:
Centre de Recherches Nucleaires, Laboratoire PHASE, B.P.20, F-67037 Strasbourg, France
C. d'Anterroches
Affiliation:
Centre National d'Etudes des Telecommunications, B.P. 98, F-38243 Meylan, France
A. Golanski
Affiliation:
Centre National d'Etudes des Telecommunications, B.P. 98, F-38243 Meylan, France
Get access

Abstract

Oxygen ions were implanted into (100) oriented single crystal Si at energies in the range of 0.6 to 2 MeV at normal and oblique (60°) incidences. Oxygen concentration profiles were measured using the 16O(d, α)14N nuclear reaction for 900 keV deuterons. The experimentally measured oxygen distributions were subsequently fitted to the theoretical profiles calculated assuming the Pearson VI distribution. The distribution moments (Rp, ΔRp, ΔR⊥ skewness, and kurtosis) were deduced as the best fit parameters and compared to the computer simulation results (TRIM 87 and PRAL). Whatever the calculation method, the measured Rp and ΔRp values are close to those predicted by the theory. Deeply buried SiO2 layers were formed using a single step implantation and annealing process. A dose of 1.8 × 1018/cm2 of 2 MeV O+ was implanted into the Si substrate maintained at a temperature of 550 °C. The implanted samples were characterized using the Rutherford backscattering (RBS)/channeling technique and cross-sectional transmission electron microscopy (XTEM). The implanted samples were subsequently annealed at 1350 °C for 4 h in an Ar ambient. The annealing process results in creating a continuous SiO2 layer, 0.4 μm thick below a 1.6 μm thick top single crystal silicon overlayer. The buried SiO2 layer contains the well-known faceted Si inclusions. The density of dislocations within the top Si layer remains lower than the XTEM detection limit of 107/cm2. Between the Si overlayer and the buried SiO2 a layer of faceted longitudinal SiO2 precipitates is present. A localized dislocation network links the precipitates to the buried SiO2 layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Margail, J., Stoemenos, J., Jaussaud, C., and Bruel, M., Appl. Phys. Lett. 54, 526 (1989).CrossRefGoogle Scholar
2Ommen, A.H. Van, in Mater. Res. Soc. Symp. Proc., edited by Sturm, J. C., Chen, C.K., Pfeiffer, L., and Hemment, P. L. F., 107, 43 (1987).Google Scholar
3Narayan, J., Kim, S.Y., Vedam, K., and Manukonda, R., Appl. Phys. Lett. 51, 343 (1987).CrossRefGoogle Scholar
4Namavar, F., Cortesi, E., and Sioshansi, P., Mater. Res. Soc. Proc, MRS 1988 Fall Meeting (to be published).Google Scholar
5Holland, O.W., Sjoreen, T. P., Fathy, D., and Narayan, J., Appl. Phys. Lett. 45, 1081 (1985).CrossRefGoogle Scholar
6Golanski, A., Perio, A., Grob, J. J., Stuck, R., Maillet, S., and Clavelier, E., Appl. Phys. Lett. 49, 1423 (1986).CrossRefGoogle Scholar
7White, A. E., Short, K.T., Batstone, J.L., Jacobsen, D.C., Poate, J.M., and West, K. W., Appl. Phys. Lett. 50, 19 (1987).Google Scholar
8Ommen, A. H. Van and Viegers, M. P. A., Appl. Surface Science 30, 383 (1987).CrossRefGoogle Scholar
9Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46, 1064 (1985).CrossRefGoogle Scholar
10Holland, O. W., Sjoreen, T. P., Fathy, D., and Narayan, J., Appl. Phys. Lett. 45, 1081 (1984).CrossRefGoogle Scholar
11Winterbon, K.B., Appl. Phys. Lett. 42, 205 (1983).CrossRefGoogle Scholar
12Elderton, W. P. and Johnson, N. L., Systems of Frequency Curves, Cambridge University, New York (1969).CrossRefGoogle Scholar
13Armini, A. J., Computer Code PROFILE, Surface Alloys Corporation.Google Scholar
14Ziegler, J.F., Biersack, J.P., and Littmark, U., in The Stopping and Range of Ions in Solids, edited by Ziegler, J. F. (Pergamon Press, New York, 1985), Vol. 1.Google Scholar
15Furukawa, S. and Matsumura, H., Appl. Phys. Lett. 22, 97 (1973).CrossRefGoogle Scholar
16Grant, W. A., Williams, J. S., and Dodds, D., in Ion Beam Surface Layer Analysis, edited by Meyer, O., Linker, G., and Kappeler, F. (Plenum Press, New York, 1976), p. 235.CrossRefGoogle Scholar
17Linhard, J., Scharff, M., and Schiott, H. E., Mat. Fys. Medd. Dan. Vid. Selsk. 33, 14 (1963).Google Scholar
18Winterbon, K. B., Ion Implantation Range and Energy Deposition Distributions (IFI/Plenum, New York, 1975).CrossRefGoogle Scholar
19Thompson, D. A. and Walker, R. S., Nucl. Instrum. Methods 132, 281 (1976).CrossRefGoogle Scholar
20Maillet, S., Stuck, R., Grob, J. J., Golanski, A., Pantel, R., and Perio, A., Nucl. Instrum. Methods B19/20, 294 (1987).CrossRefGoogle Scholar
21Reeson, K. J., Nucl. Instrum. Methods B19/20, 269 (1987).CrossRefGoogle Scholar
22Maillet, S., Grob, A., Stuck, R., Grob, J.J., Golanski, A., Oberlin, J.C., and Pantel, K., in Energy Beam–Solid Interactions and Transient Thermal Processing, edited by Nguyen, V. T. and Cullis, A. G., Lee Editions de Physique, 91944 Les Ulis, France, 489 (1985).Google Scholar
23Baumgart, H. and Ommen, A.H. Van, European Mater. Res. Soc. Symp. Proc. (1988) (to be published).Google Scholar
24Kappert, H.F., Heidemann, K. F., Grabe, B., and Kaat, E. Te, Phys. Status Solidi A 47, 751 (1978).CrossRefGoogle Scholar