Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T02:12:19.011Z Has data issue: false hasContentIssue false

Studies on thermoplastic 3D printing of steel–zirconia composites

Published online by Cambridge University Press:  26 August 2014

Uwe Scheithauer*
Affiliation:
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany
Anne Bergner
Affiliation:
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany
Eric Schwarzer
Affiliation:
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany
Hans-Jürgen Richter*
Affiliation:
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany
Tassilo Moritz
Affiliation:
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Additive manufacturing (AM) opens new possibilities for functionalization and miniaturization of components in many application fields. Different technologies are known to produce single- or multimaterial components from polymer ceramic or metal. Our new approach – thermoplastic 3D printing – makes it possible to produce metal–ceramic composites. High-filled metal and ceramic suspensions based on thermoplastic binder systems were used as they solidify by cooling. Hence, the portfolio of applicable materials is not limited. Paraffin-based thermoplastic feedstocks with stainless steel powder (17-4PH) and zirconia powder (TZ-3Y-E) were developed with an adapted powder content of 47 vol% steel and 45 vol% zirconia. As compared to other AM technologies, the suspensions were only applied at particular points and areas and not on the whole layer. The printed samples were conventionally debinded and sintered. FESEM studies of the cross-section of the sintered samples showed a homogenous, dense microstructure and a very good connection between the different materials and layers.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ASTM-Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies, March 1, 2012, ASTM International Distributed under ASTM license by Beuth publisher.Google Scholar
Chartier, T. and Badev, A.: Rapid prototyping of ceramics. In Handbook of Advanced Ceramics, Somiya, S. ed.; Elsevier, Oxford, UK, 2013; pp. 489524.CrossRefGoogle Scholar
Pham-Gia, K., Rossner, W., Wessler, B., Schäfer, M., and Schwarz, M.: Rapid prototyping of high-density alumina ceramics using stereolithography. cfi/Ber. DKG 83, 3640 (2006).Google Scholar
Chartier, T., Duterte, C., Delhote, N., Baillargeat, D., Verdeyme, S., Delage, C., and Chaput, C.J.: Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes. J. Am. Ceram. Soc. 91, 24692474 (2008).CrossRefGoogle Scholar
Griffith, M.L. and Halloran, J.W.: Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 26012608 (1996).Google Scholar
Licciulli, A., Esposito Corcione, C., Greco, A., Amicarelli, V., and Maffezzoli, A.: Laser stereolithography of ZrO2 toughened Al2O3 . J. Eur. Ceram. Soc. 25, 15811589 (2005).CrossRefGoogle Scholar
de Hazan, Y., Thanert, M., Trunec, M., and Misak, J.: Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J. Eur. Ceram. Soc. 32, 11871198 (2012).CrossRefGoogle Scholar
Felzmann, R., Gruber, S., Mitteramskogler, G., Tesavibul, P., Boccaccini, A.R., Liska, R., and Stampfl, J.: Lithography-based additive manufacturing of cellular ceramic structures. Adv. Eng. Mater. 14, 10521058 (2012).CrossRefGoogle Scholar
Lenk, R., Nagy, A., Richter, H-J., and Techel, A.: Material development for laser sintering of silicon carbide. cfi/Ber. DKG 83, 4143 (2006).Google Scholar
Regenfuss, P., Ebert, R., and Exner, H.: Laser micro sintering - A versatile instrument for the generation of microparts. Laser Tech. J. 4, 2631 (2007).Google Scholar
Hagedorn, Y-C., Wilkes, J., Meiners, W., Wissenbach, K., and Poprawe, R.: Net shaped high performance oxide ceramic parts by selective laser melting. Phys. Procedia 5, 587594 (2010).Google Scholar
Wu, Y., Du, J., Choy, K-L., and Hench, L.L.: Laser densification of alumina powder beds generated using aerosol spray deposition. J. Eur. Ceram. Soc. 27, 47274735 (2007).CrossRefGoogle Scholar
Goodridge, R.D., Lorrison, J.C., Dalgarno, K.W., and Wood, D.J.: Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics. Glass Technol. 45, 9496 (2004).Google Scholar
Gbureck, U., Hoelzel, T., Biermann, I., Barralet, J., and Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci.: Mater. Med. 19, 15591563 (2008).Google Scholar
Seitz, H., Rieder, W., Irsen, S., Leukers, B., and Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res., Part B 74B, 782788 (2005).Google Scholar
Yoon, J.Y.S., Deyhle, H., Gbureck, U., Vorndran, E., Beckmann, F., and Muller, B.: Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping. Int. J. Mater. Res. 103, 200206 (2012).CrossRefGoogle Scholar
Khalyfa, A., Meyer, W., Schnabelrauch, M., Vogt, S., and Richter, H-J.: Manufacturing of biocompatible ceramic bone substitutes by 3D-printing. cfi/Ber. DKG 83, 2326 (2006).Google Scholar
Deisinger, U., Irlinger, F., Pelzer, R., and Ziegler, G.: D-printing of HA-scaffolds for the application as bone substitute material. cfi/Ber. DKG 83, 7578 (2006).Google Scholar
Dombrowski, F., Caso, P.W.G., Laschke, M.W., Klein, M., Guenster, J., and Berger, G.: 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates. Key Eng. Mater. 529530, 138142 (2013).Google Scholar
Zocca, A., Gomes, C.M., Bernardo, E., Muller, R., Gunster, J., and Colombo, P.: LAS glass–ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33, 15251533 (2013).Google Scholar
Melcher, R., Travitzky, N., Zollfrank, C., and Greil, P.: 3D printing of Al2O3/Cu-O interpenetrating phase composite. J. Mater. Sci. 46, 12031210 (2011).Google Scholar
Polsakiewicz, D. and Kollenberg, W.: Highly loaded alumina inks for use in a piezoelectric print head. Mater. Sci. Eng. Technol. 42, 812819 (2011).Google Scholar
Günster, J., Engler, S., and Heinrich, J.G.: Forming of complex-shaped ceramic products via layer-wise slurry deposition (LSD). Bull. Eur. Ceram. Soc. 1, 2528 (2003).Google Scholar
Cappi, B., Oezkol, E., Ebert, J., and Telle, R.: Direct inkjet printing of Si3N4: Characterization of ink, green bodies, and microstructure. J. Eur. Ceram. Soc. 28, 26252628 (2008).Google Scholar
Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., and Fischer, H.: Direct inkjet printing of dental prostheses made of zirconia. J. Dent. Res. 88, 673676 (2009).Google Scholar
Allahverdi, M., Danforth, S.C., Jafari, M., and Safari, A.: Processing of advanced electroceramic components by fused deposition technique. J. Eur. Ceram. Soc. 21, 14851490 (2001).Google Scholar
Bose, S., Darsell, J., Hosick, H., Yang, L., Sarkar, D.K., and Bandyopadhyay, A.: Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 2328 (2002).Google Scholar
Schlordt, T., Schwanke, S., Keppner, F., Fey, T., Travitzky, N., and Greil, P.: Robocasting of alumina hollow filament lattice structures. J. Eur. Ceram. Soc. 33, 32433248 (2013).CrossRefGoogle Scholar
Stuecker, J.N., Cesarano, J. III, and Hirschfeld, D.A.: Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J. Mater. Process. Technol. 142, 318325 (2003).Google Scholar
Cai, K., Roman-Manso, B., Smay, J.E., Zhou, J., Osendi, M.I., Belmonte, M., and Miranzo, P.: Geometrically complex silicon carbide structures fabricated by robocasting. J. Am. Ceram. Soc. 95, 26602666 (2012).Google Scholar
Polsakiewicz, D. and Kollenberg, W.: Process and materials development for functionalized printing in three dimensions (FP-3D). refractories WORLDFORUM 4, 18 (2012).Google Scholar
Cetinel, F.A., Bauer, W., Mueller, M., Knitter, R., and Hausselt, J.: Influence of dispersant, storage time and temperature on the rheological properties of zirconia-paraffin feedstocks for LPIM. J. Eur. Ceram. Soc. 30, 13911400 (2010).CrossRefGoogle Scholar
Gorjan, L., Dakskobler, A., and Kosmac, T.: Strength evolution of injection-molded ceramic parts during wick-debinding. J. Am. Ceram. Soc. 95, 188193 (2012).Google Scholar
Yeo, J., Jung, Y., and Choi, S.: Zirconia-stainless steel functionally graded material by tape casting. J. Eur. Ceram. Soc. 18, 12811285 (1998).Google Scholar
Dourandish, M., Simchi, A., Shabestary, E.T., and Hartwig, T.: Pressureless sintering of 3Y-TZP/stainless-steel composite layers. J. Am. Ceram. Soc. 91, 34933503 (2008).Google Scholar
Dourandish, M. and Simchi, M.A.: Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding. J. Mater. Sci. 44, 12641274 (2009).CrossRefGoogle Scholar
Bargel, H-J. and Schulze, G.: In Material Science (original title: Werkstoffkunde), 9th ed. (Springer, Berlin, Heidelberg 2005), pp. 232334.Google Scholar
Bergner, A., Moritz, T., and Michaelis, A.: Steel-ceramic laminates made by tape casting – Processing and interfaces. J. Am. Ceram. Soc. (2014, accepted).Google Scholar