Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T11:11:33.873Z Has data issue: false hasContentIssue false

Structure of shear bands in Pd40Ni40P20 bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

Y.M. Chen
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047, Japan
T. Mukai
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047, Japan
K. Hono*
Affiliation:
National Institute for Materials Science, Tsukuba 305-0047, Japan; and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The atomic structure of shear bands in Pd40Ni40P20 bulk metallic glass has been compared to an undeformed matrix phase using pair distribution functions (PDFs) derived from energy filtered nanobeam electron diffraction. Shear bands do not show any characteristic contrast in transmission electron microscopy (TEM) images when specimens are prepared with uniform thickness. PDFs from a shear band exhibit a slight decrease in the first peak, indicating a slight difference in packing density and short range order compared to the undeformed matrix.

Type
Outstanding Symposium Papers
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pampillo, C.A.: Flow and fracture in amorphous alloys. J. Mater. Sci 10, 1194 1975CrossRefGoogle Scholar
2.Masumoto, T., Maddin, R.: Structural stability and mechanical properties of amorphous metals. Mater. Sci. Eng., A 19, 1 1975CrossRefGoogle Scholar
3.Conner, R.D., Li, Y., Nix, W.D., Johson, W.L.: Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 2004CrossRefGoogle Scholar
4.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B: Condens. Matter 64, R180201 2001CrossRefGoogle Scholar
5.Schroers, J., Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
6.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
7.Donovan, P.E., Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 1981CrossRefGoogle Scholar
8.Chen, H., He, Y., Shiflet, G.J., Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 1994CrossRefGoogle Scholar
9.Kim, J-J., Choi, Y., Suresh, S., Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 2002CrossRefGoogle ScholarPubMed
10.Kumar, G., Ohkubo, T., Mukai, T., Hono, K.: Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr. Mater. 57, 173 2007CrossRefGoogle Scholar
11.Saida, J., Setyawan, A.D.H., Kato, H., Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 2005CrossRefGoogle Scholar
12.Chen, M.W., Inoue, A., Zhang, W., Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett 96, 245502 2006CrossRefGoogle ScholarPubMed
13.Li, J., Wang, Z.L., Hugnagel, T.C.: Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phys. Rev. B: Condens. Matter 65, 144201 2002CrossRefGoogle Scholar
14.Miller, P.D., Gibson, J.M.: Connecting small-angle diffraction with real-space images by quantitative transmission electron microscopy of amorphous thin-films. Ultramicroscopy 74, 221 1998CrossRefGoogle Scholar
15.Jiang, W.H., Fan, G.J., Choo, H., Liaw, P.K.: Ductility of a Zr-based bulk-metallic glass with different specimen's geometries. Mater. Lett. 60, 3537 2006CrossRefGoogle Scholar
16.Mukai, T., Kawamura, Y.: unpublished workGoogle Scholar
17.Ohkubo, T., Hirotsu, Y.: Electron diffraction and high-resolution electron microscopy study of an amorphous Pd82Si18 alloy with nanoscale phase separation. Phys. Rev. B: Condens. Matter 67, 094201 2003CrossRefGoogle Scholar
18.Lewandowski, J.J., Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 2006CrossRefGoogle Scholar
19.Hono, K.: Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Prog. Mater. Sci 47, 621 2002CrossRefGoogle Scholar
20.Zhang, Y., Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 2006CrossRefGoogle Scholar
21.Hirotsu, Y., Ishimaru, M., Ohkubo, T., Hanada, T., Sugiyama, M.: Application of nano-diffraction to local atomic distribution function analysis of amorphous materials. J. Electron Microsc. (Tokyo) 50, 6435 2001CrossRefGoogle ScholarPubMed
22.Pampillo, C.A.: Localized shear deformation in a glassy metal. Scr. Metall 6, 915 1972CrossRefGoogle Scholar
23.Lim, H.K., Park, E.S., Park, J.S., Kim, W.T., Kim, D.H.: Fabrication and mechanical properties of WC particulate reinforced Cu47Ti33Zr11Ni6Sn2Si1 bulk metallic glass matrix composites. J. Mater. Sci. 40, 6127 2005CrossRefGoogle Scholar
24.Debenedetti, P.G., Stillinger, H.F.: Supercooled liquids and the glass transition. Nature 410, 259 2001CrossRefGoogle ScholarPubMed
25.Jiang, W.H., Atzmon, M.: The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission-electron-microscopy study. Acta Mater 51, 4095 2003CrossRefGoogle Scholar