Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:08:59.787Z Has data issue: false hasContentIssue false

Structure evolution of ZrB2–SiC during the oxidation in air

Published online by Cambridge University Press:  31 January 2011

Xing-Hong Zhang*
Affiliation:
Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Ping Hu*
Affiliation:
Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Jie-Cai Han
Affiliation:
Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
*
Address all correspondence to these authors.a)e-mail: [email protected]b)e-mail: [email protected]
Address all correspondence to these authors.a)e-mail: [email protected]b)e-mail: [email protected]
Get access

Abstract

The structure evolution and oxidation behavior of ZrB2–SiC composites in air from room temperature to ultrahigh temperature were investigated using furnace testing, arc jet testing, and thermal gravimetric analysis (TGA). The oxide structure changed with the increasing temperature. SiC content has no apparent influence on the evolution of structure during the oxidation of ZrB2–SiC below 1600 °C. However, the evolution of structure for ZrB2–SiC above 1800 °C was significantly affected by the SiC content. The formation of the SiC depleted layer in the ZrB2–SiC system not only depends on the surrounding conditions of pressure and temperature but also on the structure distribution of the SiC in the ZrB2 matrix. The apparent recrystallization of the ZrO2 occurred above 1800 °C. The SiC content should be controlled at ∼16% in the ZrB2–SiC system for the ultrahigh-temperature application. The mechanisms of the structure evolution during oxidation in air were also analyzed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Upadhya, K., Yang, J.M.Hoffman, W.P.: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 76, 51 1997Google Scholar
2Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M.Salem, J.A.: Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757 2002CrossRefGoogle Scholar
3Wuchina, E., Opeka, M., Causey, S., Buesking, K., Spain, J., Cull, A., Routbort, J.Guitierrez-Mora, F.: Designing for ultra high temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx, and Hf(N). J. Mater. Sci. 39, 5939 2004CrossRefGoogle Scholar
4Van Wie, D.M., Drewry, D.G. Jr., King, D.E.Hudson, C.M.: The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915 2004Google Scholar
5Monteverde, F.: The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros. Sci. 47, 2020 2005CrossRefGoogle Scholar
6Gasch, M., Ellerby, D., Irby, E., Beckman, S., Gusman, M.Johnson, S.: Processing, properties and arc jet oxidation of hafnium diboride/Silicon carbide ultra high temperature ceramic. J. Mater. Sci. 39, 5925 2004CrossRefGoogle Scholar
7Monteverde, F.Bellosi, A.: Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications. Adv. Eng. Mater. 6, 331 2004Google Scholar
8Monteverde, F.Bellosi, A.: The resistance to oxidation of an HfB2–SiC composite. J. Eur. Ceram. Soc. 25, 1025 2005CrossRefGoogle Scholar
9Chamberlain, A.L., Fahrenholtz, W.G.Hilmas, G.E.: Oxidation of ZrB2–SiC ceramics under atmospheric and reentry conditions. Refract. Appl. Trans. 1, 1 2005Google Scholar
10Opeka, M.M., Talmy, I.G.Zaykoski, J.A.: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 2004CrossRefGoogle Scholar
11Monteverde, F.Bellosi, A.: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150, 552 2003CrossRefGoogle Scholar
12Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L.Zimmermann, J.W.: Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 39, 5951 2004CrossRefGoogle Scholar
13Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G.Zaykoski, J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc 90, 1347 2007CrossRefGoogle Scholar
14Han, J.C., Hu, P., Zhang, X.H.Meng, S.H.: Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C. Scr. Mater. 57, 825 2007Google Scholar
15Han, J.C., Hu, P., Zhang, X.H., Meng, S.H.Han, W.B.: Oxidation resistant ZrB2–SiC composites at 2200 °C. Compos. Sci. Technol. 68, 799 2008CrossRefGoogle Scholar
16Zhang, X.H., Hu, P., Han, J.C.Meng, S.H.: Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 68, 1718 2008CrossRefGoogle Scholar
17Fahrenholtz, W.G.: Thermodynamic analysis of ZrB2–SiC oxidation: Formation of a SiC-depletion region. J. Am. Ceram. Soc. 90, 143 2007CrossRefGoogle Scholar
18Rezaie, A., Fahrenholtz, W.G.Hilmas, G.E.: Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J. Eur. Ceram. Soc. 27, 2495 2007CrossRefGoogle Scholar
19Fahrenholtz, W.G.: The ZrB2 volatility diagram. J. Am. Ceram. Soc. 88, 3509 2005Google Scholar
20Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E.Ellerby, D.T.: Characterization of zirconium diboride-molybdenum disilicide ceramics. Ceram. Trans. 153, 299 2004Google Scholar
21Sciti, D., Brach, M.Bellosi, A.: Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J. Mater. Res. 20, 922 2005Google Scholar
22Opila, E.J., Levine, S.R.Lorincz, J.: Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci. 39, 5969 2004CrossRefGoogle Scholar
23Talmy, I.G., Zaykoski, J.A., Opeka, M.M.Smith, A.H.: Properties of ceramics in the system ZrB2–Ta5Si3. J. Mater. Res. 21, 2593 2006CrossRefGoogle Scholar
24Levine, S.R.Opila, E.J.: Tantalum addition to zirconium diboride for improved oxidation resistance.NASA/TM—2003-212483,2003 1–13Google Scholar
25Lavrenko, V.A., Panasyuk, A.D., Protsenko, T.G., Dyatel, V.P., Lugovskaya, E.S.Egorova, E.I.: High temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Poroshk. Metall. 6, 56 1981Google Scholar
26Talmy, I.G., Zaykoski, J.A., Opeka, M.M.Dallek, S.: Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition netal borides in High Temperature Corrosion and Materials Chemistry III edited by M. McNallan and E. Opila The Electrochemical Society Pennington, NJ, 2001 144–153Google Scholar
27Goto, T.Homma, H.: High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres. J. Eur. Ceram. Soc. 22, 2749 2002CrossRefGoogle Scholar
28Balat, M.J.H.: Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. J. Eur. Ceram. Soc. 16, 55 1996CrossRefGoogle Scholar
29Chase, M.W. Jr.: NIST-JANAF Thermochemical Tables 4th ed.American Institute of Physics Woodbury, NY 1998Google Scholar
30Heuer, A.H.Lou, V.L.K.: Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation. J. Am. Ceram. Soc. 73, 2786 1990Google Scholar