Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T17:14:47.403Z Has data issue: false hasContentIssue false

Structure and properties of multiferroic (1 − x)BiFeO3xPbTiO3 single crystals

Published online by Cambridge University Press:  31 January 2011

W-M. Zhu
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
H-Y. Guo
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
Z-G. Ye*
Affiliation:
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single crystals of the multiferroic (1 − x)BiFeO3xPbTiO3 (BF–PT) solid solution with a nominal morphotropic phase boundary (MPB) composition were grown from flux. Structural characterization by x-ray diffraction shows the simultaneous existence of a tetragonal, an orthorhombic, and a rhombohedral perovskite phase in the crystals. A high ferroelectric Curie point of 660 °C was found in the BF–PT crystals by dielectric measurements. The variation of the magnetic moment as a function of temperature of the BF–PT crystals measured under zero field cooling mode reveals three anomalies with the highest one around 440 K, corresponding to the antiferromagnetic ordering temperatures of the rhombohedral, orthorhombic, and tetragonal phases, respectively. These results demonstrate the intrinsic relations between the MPB phase components and the macroscopic ferroic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M.Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 2003CrossRefGoogle ScholarPubMed
2Yun, K.Y., Ricinschi, D., Kanashima, T., Noda, M.Okuyama, M.: Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin films. Jpn. J. Appl. Phys. 43(5A), L647 2004CrossRefGoogle Scholar
3Li, J., Wang, J., Wutting, M., Ramesh, R., Wang, N., Ruette, B., Pyatakov, A.P., Zvedin, A.K.Viehland, D.: Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl. Phys. Lett. 84, 5261 2004CrossRefGoogle Scholar
4Ederer, C.Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) 2005CrossRefGoogle Scholar
5Neaton, J.B., Ederer, C., Waghmare, U.V., Spaldin, N.A.Rabe, K.M.: First principle study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 2005CrossRefGoogle Scholar
6Kubel, F.Schimd, H.: Growth, twinning and etch figures of ferroelectric/ferroelastic dendritic BiFeO3 single domain crystal. J. Cryst. Growth 129, 515 1993CrossRefGoogle Scholar
7Sosnowska, I., Peterlin-Neumaier, T.Steichele, E.: Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15, 4835 1982CrossRefGoogle Scholar
8Dzialoshinskii, I.E.: Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259 1957Google Scholar
9Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 1960CrossRefGoogle Scholar
10Popov, Y.F., Zvezdin, A.K., Vorob’ev, G.P., Kadomtseva, A.M., Murashev, V.A.Rakov, D.N.: Linear magnetoelectric effect and phase transition in bismuth ferrite, BiFeO3. JETP Lett. 57, 69 1993Google Scholar
11Fedulov, S.A., Ladyzhinskii, P.B., Pyatigorskaya, I.L.Venevtsev, Y.N.: Complete phase diagram of the PbTiO3–BiFeO3 system. Sov. Phys. Solid State 6(2), 375 1964Google Scholar
12Fedulov, S.A., Pyatigorskaya, L.I.Venevtsev, Y.N.: An investigation of the BiFeO3–SrTiO3 system. Sov. Phys. Crystallogr. 10, 238 1965Google Scholar
13Smolenskii, G.A.Yudin, V.M.: Weak ferromagnetism of some BiFeO3–Pb(Fe0.5Nb0.5)O3 perovskite. Sov. Phys. Solid State 6, 2936 1965Google Scholar
14Gerson, R., Chu, P-C.James, W.J.: Ferroelectric properties of PbZrO3–BiFeO3 solid solutions. J. Appl. Phys. 38, 55 1967CrossRefGoogle Scholar
15Połomska, M., Kaczmarek, W.Pajak, Z.: Electric and magnetic properties of (Bi1−xLax)FeO3 solid solution. Phys. Status Solidi A 23, 567 1974 aCrossRefGoogle Scholar
16Kumar, M.M., Srinath, S., Kumar, G.S.Suryanarayana, S.V.: Spontaneous magnetic moment in BiFeO3–BaTiO3 solid solution at low temperature. J. Magn. Magn. Mater. 188, 203 1998CrossRefGoogle Scholar
17Kanai, T., Ohkoshi, S., Nakajima, A., Watanabe, T.Hashimoto, K.: A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1−x solid solution. Adv. Mater. 13, 487 20013.0.CO;2-L>CrossRefGoogle Scholar
18Fedulov, S.A., Venevtsev, Y.N., Zhdanov, G.S., Smazhevskaya, G.E., Rez, I.S.: X-ray and electrical studies of the PbTiO3–BiFeO3 system. Sov. Phys. Crystallogr. 7(1), 62 1962Google Scholar
19Smith, R.T., Achenbach, G.D., Gerson, R.James, W.J.: Dielectric properties of solid solutions of BiFeO3 with Pb(Zr,Ti)O3 at high temperature and high frequency. J. Appl. Phys. 39(1), 70 1968CrossRefGoogle Scholar
20Sunder, V.V.S.S., Halliyal, A.Umarji, A.M.: Investigation of tetragonal distortion in the PbTiO3–BiFeO3 system by high-temperature x-ray diffraction. J. Mater. Res. 10(5), 1301 1995CrossRefGoogle Scholar
21Cheng, J-R., Li, N.Cross, L.E.: Structural and dielectric properties of Ga-modified BiFeO3–PbTiO3 crystalline solutions. J. Appl. Phys. 94(8), 5153 2003CrossRefGoogle Scholar
22Cheng, J-R.Cross, L.E.: Effect of La substitution on ferroelectric rhombohedral/tetragonal morphotropic phase boundary in (1 − x)(Bi,La)(Ga0.05Fe0.95)O3xPbTiO3 piezoelectric ceramics. J. Appl. Phys. 94(8), 5188 2003CrossRefGoogle Scholar
23Woodward, D.I., Reaney, I.M., Eitel, R.E.Randall, C.A.: Crystal and domain structure of the BiFeO3–PbTiO3 solid solution. J. Appl. Phys. 94(5), 3313 2003CrossRefGoogle Scholar
24Zhu, W.M.Ye, Z–G.: Effect of chemical modification on the electrical properties of 0.67BiFeO3–0.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435 2004CrossRefGoogle Scholar
25Zhu, W-M.Ye, Z-G.: Improved dielectric and ferroelectric properties of high Curie temperature (1 − x)BiFeO3xPbTiO3 ceramics by aliovalent ionic substitution. Appl. Phys. Lett. 89, 232904 2006CrossRefGoogle Scholar
26Eisa, M.A., Abadia, M.F.Gadalla, A.M.: The system TiO2–PbO in air. Trans. J. Brit. Ceram. Soc. 79, 100 1980Google Scholar
27Fedulov, S.A., Venevstev, Y.N., Zhdanov, G.S.Smazhevskaya, E.G.: High-temperature x-ray and thermal-analysis results for bismuth ferrite. Sov. Phys. Crystallogr. 6, 640 1961Google Scholar
28Comyn, T.P., Mcbride, S.P.Bell, A.J.: Flux growth of BiFeO3–PbTiO3 single crystals. J. Cryst. Growth 58, 3844 2004Google Scholar
29Rupp, B.: XLAT: A microcomputer program for the refinement of cell constants. Scripta Metall. 22, 1 1988 http://www.ruppweb.org/new_comp/xlat_new.htmGoogle Scholar
30Guo, Y., Luo, H., Ling, D., Xu, H., He, T.Yin, Z.: The phase transition sequence and the location of morphotropic phase boundary region in (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystal. J. Phys.: Condens. Matter. 15, L77 2003Google Scholar
31Zhang, L., Dong, M.Ye, Z-G.: Flux growth and characterization of the relaxor-based Pb[(Zn1/3Nb2/3)1−xTix]O3 [PZNT] piezocrystals. Mater. Sci. Eng. B 78, 96 2000CrossRefGoogle Scholar
32Kiselev, S.V., Ozerov, R.P.Zhdanov, G.S.: Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 7(8), 742 1963Google Scholar
33Sosnowska, I., Schäfer, W., Kockelmann, W., Andersen, K.H.Troyanchuk, I.O.: Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl. Phys. A 74(Suppl.), S1040 2002CrossRefGoogle Scholar
34Zhu, W-M., Guo, H-Y., Ye, Z-G.: (unpublished)Google Scholar