Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T21:02:20.913Z Has data issue: false hasContentIssue false

Structure and misorientation angle distributions of (001) twist grain boundaries in Bi2Sr2Ca1Cu2Oy/Ag composite tapes processed in different oxygen partial pressures

Published online by Cambridge University Press:  31 January 2011

Hiroki Fujii
Affiliation:
National Research Institute for Metals, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
Hiroaki Kumakura
Affiliation:
National Research Institute for Metals, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
Kazumasa Togano
Affiliation:
National Research Institute for Metals, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

We investigated the relationship between the structure and misorientation angle of (001) twist grain boundaries in Bi2Sr2Ca1Cu2Oy/Ag composite tapes processed in different oxygen partial pressures (PO2 = 0.01, 0.21, and 1 atm). Large-angle misoriented twist boundaries (>10°) essentially had no amorphous layers at the interface, and the misorientation angles of these boundaries mostly corresponded to low-energy misorientations. This large-angle misoriented boundary structure was independent of PO2. Small-angle misoriented twist boundaries (<10°), on the other hand, corresponded to high-energy misorientations and sometimes had amorphous layers at the interface. The population of the small-angle boundary with an amorphous layer was very low in the tape processed in PO2 = 1 atm. This suggests that high PO2 during the heat treatment is effective in the improvement of grain coupling, and hence, to increase critical current density.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kase, J., Togano, K., Kumakura, H., Dietderich, D.R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L1096 (1990).CrossRefGoogle Scholar
2.Kase, J., Irisawa, N., Morimoto, T., Togano, K., Kumakura, H., Dietderich, D. R., and Maeda, H., Appl. Phys. Lett. 56, 970 (1990).CrossRefGoogle Scholar
3.Kumakura, H., Kitaguchi, H., Togano, K., and Inoue, N., J. Appl. Phys. 80, 5162 (1996).CrossRefGoogle Scholar
4.Zhang, W. and Hellstrom, E. E., Supercond. Sci. Technol. 8, 1 (1995).Google Scholar
5.Shibutani, K., Hase, T., Hayashi, S., Shimada, M., and Ogawa, R., Adv. Supercond. VII, 835 (1995).Google Scholar
6.Fujii, H., Kumakura, H., Kitaguchi, H., Togano, K., Zhang, W., Feng, Y., and Hellstrom, E. E., IEEE Trans. Appl. Supercond. 7, 1707 (1997).CrossRefGoogle Scholar
7.Fujii, H., Kitaguchi, H., Kumakura, H., and Togano, K., Physica C 282–287, 2567 (1997).CrossRefGoogle Scholar
8.Fujii, H., Kumakura, H., and Togano, K., J. Jpn. Inst. Metals (in Japanese) 61, 856 (1997).CrossRefGoogle Scholar
9.Feng, Y., Hautanen, K. E., High, Y. E., Larbalestier, D. C., Ray, R. II, Hellstrom, E. E., and Babcock, S. E., Physica C 192, 293 (1992).CrossRefGoogle Scholar
10.Eibl, O., Physica C 168, 239 (1990).CrossRefGoogle Scholar
11.Eibl, O., Wilhelm, M., Kummeth, P., and Neumüller, H. W., in Proceedings of the 7th International Workshop on Critical Currents in Superconductors, edited by Weber, H. W. (World Scientific, Singapore, 1994), p. 27.Google Scholar
12.Zhu, Y., Suenaga, M., and Sabatini, R. L., Appl. Phys. Lett. 65, 1832 (1994).CrossRefGoogle Scholar
13.Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).CrossRefGoogle Scholar
14.Zhu, Y., Corcoran, Y. L., and Suenaga, M., Interface Sci. 1, 359 (1994).CrossRefGoogle Scholar
15.Zhu, Y., Zuo, J. M., Moodenbaugh, A. R., and Suenaga, M., Philos. Mag. A 70, 969 (1994).CrossRefGoogle Scholar