Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:02:59.176Z Has data issue: false hasContentIssue false

The structural transformation of anatase TiO2 by high-energy vibrational ball milling

Published online by Cambridge University Press:  31 January 2011

Suchitra Sen*
Affiliation:
Central Glass & Ceramic Research Institute, Calcutta 700032, India
M. L. Ram
Affiliation:
Central Glass & Ceramic Research Institute, Calcutta 700032, India
S. Roy
Affiliation:
Central Glass & Ceramic Research Institute, Calcutta 700032, India
B. K. Sarkar
Affiliation:
Central Glass & Ceramic Research Institute, Calcutta 700032, India
*
a)Address all correspondence to this author.
Get access

Abstract

The structural transformation of anatase TiO2 by high-energy vibrational ball milling was studied in detail by different analytical methods of x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This structural transformation involves both phase transition and nanoparticle formation, and no amorphization was observed. The crystallite size was found to decrease with milling time down to nanometer size ∼13 nm and approaching saturation, accompanied by phase transformation to metastable phases, i.e., TiO2(II), which is a high-pressure phase and TiO2(B), which was identified in ball-milled powder reported for the first time in this paper. These phases eventually started transforming to rutile by further milling.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lin, I. J. and Nadiv, S., Mater. Sci. Eng. 39, 193 (1979).CrossRefGoogle Scholar
2.Shen, T.D., Koch, C. C., McCormick, T. L., Nemanich, R. J., Huang, J. Y., and Huang, J. G., J. Mater. Res. 10, 139 (1995).CrossRefGoogle Scholar
3.Koch, C. C. and Cho, Y.S., Nanostruct. Mater. 1, 207 (1992).CrossRefGoogle Scholar
4.Suzuki, K., J. Non-Cryst. Solids 112, 23 (1989).CrossRefGoogle Scholar
5.Kubo, K. and Miyazaki, T., J. Chem. Soc. Jpn. 71, 1301 (1968).Google Scholar
6.Chaudhuri, J., Ram, M. L., and Sarkar, B.K., J. Mater. Sci. 29, 3484 (1994).CrossRefGoogle Scholar
7.Begin-Colin, S., Le Caër, G., Mocellin, A., and Zandona, M., Philos. Mag Lett. 69, 1 (1994).CrossRefGoogle Scholar
8.Linde, R. L. and DeCarli, P. S., J. Chem. Phys. 50, 319 (1969).CrossRefGoogle Scholar
9.Simons, P. Y. and Dachille, F., Acta Crystallogr. 23, 334 (1967).CrossRefGoogle Scholar
10.Gleiter, H., Prog. Mater. Sci. 33, 223 (1990).CrossRefGoogle Scholar
11. Ashim Kumar Chakraborty and Suchitra Sen, CGCRI Internal Report No. IDMAC/007/95 (1995).Google Scholar
12.Beu, K. E., in Handbook of X-rays, edited by Kaelble, E.F. (McGraw-Hill, New York, 1967), pp. 1019.Google Scholar
13. Saikat Sen, unpublished work.Google Scholar
14.Sen, S., Halder, S. K., and Sengupta, S. P., J. Phys. Soc. Jpn. 38, 1641 (1975).CrossRefGoogle Scholar
15.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline & Amorphous Materials, 2nd ed. (John Wiley, New York, 1974), p. 534.Google Scholar
16.Marchand, R., Brohan, L., and Tournoux, M., Mater. Res. Bull. 15, 1129 (1980).CrossRefGoogle Scholar
17. Powder Diffraction File, compiled by JCPDS (International Centre for Diffraction Data, Swarthmore, PA, 1990), set 3588.Google Scholar
18.Pauling, L. and Sturdivant, J.H., Z. Kristallogr. 68, 239 (1928).CrossRefGoogle Scholar
19.Hummel, F.A., Introduction to Phase Equilibria in Ceramic Systems (Marcel Dekker Inc., New York, 1984), p. 39.Google Scholar
20.McQueen, R.G., Jamieson, J. C., and Marsh, S.P., Science 155, 1401 (1967).CrossRefGoogle Scholar
21.Begin-Colin, S., De Araujo Pontes, L. R., Le Caër, G., Pianelli, A., Mocellin, A., and Matteazzi, P., Proceedings of the First International Conference on Mechanochemistry, Kosice (Cambridge Interscience, Cambridge, 1993).Google Scholar
22.Dachille, F. and Roy, R., Am. Ceram. Soc. Bull. 41, 225 (1962).Google Scholar
23.Chatterjee, S.K., Halder, S. K., and Sen Gupta, S. P., J. Appl. Phys. 47, 411 (1976).CrossRefGoogle Scholar
24.Sen, S., Leary, D. J., and Bauer, C.L., Thin Solid Films 94, 7 (1982).CrossRefGoogle Scholar
25.Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill Book Company, New York, 1968), p. 716.Google Scholar
26.Scattergood, R.O. and Koch, C. C., Scripta Met. et Mater. 27, 1195 (1992).CrossRefGoogle Scholar
27.Granqvist, C.G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
28.Hellstern, E., Fecht, H.J., Garland, C., and Johnson, W. L., in Multicomponent Ultrafine Microstructure, edited by McCandlish, L.E., Kear, B.H., Polk, D. E., and Siegel, R. W. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 137.Google Scholar