Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T03:07:26.892Z Has data issue: false hasContentIssue false

Structural, optical, and electronic characterization of perfluorinated sexithiophene films and mixed films with sexithiophene

Published online by Cambridge University Press:  03 April 2017

Berthold Reisz*
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Simon Weimer
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Rupak Banerjee
Affiliation:
Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
Clemens Zeiser
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Christopher Lorch
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Giuliano Duva
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Johannes Dieterle
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Keiichirou Yonezawa
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Chiba 2638522, Japan
Jin-Peng Yang
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Chiba 2638522, Japan
Nobuo Ueno
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Chiba 2638522, Japan
Satoshi Kera
Affiliation:
Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Chiba 2638522, Japan; and Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
Alexander Hinderhofer
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Alexander Gerlach
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
Frank Schreiber
Affiliation:
Institut für Angewandte Physik, Universität Tübingen, Tübingen 72076, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the growth and characterization of molecular mixed thin films of α-sexithiophene (6T), a well-known organic p-type semiconductor with high hole mobility, together with its perfluorinated counterpart, the so far rarely studied tetradecafluoro-α-sexithiophene (PF6T). Pure and blended thin films of these two molecules with different mixing ratios were grown on silicon oxide in ultrahigh vacuum by coevaporation. The effect of perfluorination and mixing on crystal structure, morphology, electronic, and optical properties was examined. The evolution of the PF6T crystal structure was followed in situ in real time by X-ray scattering. We found a new thin film structure different from the reported bulk phase with molecules either standing-up or lying-down depending on the growth temperature. The different morphologies of pure films and blends were investigated with atomic force microscopy. The impact of mixing on the core-levels and on the highest occupied molecular orbitals of 6T and PF6T is discussed.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Moritz Riede

References

REFERENCES

Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle ScholarPubMed
Witte, G. and Wöll, C.: Growth of aromatic molecules on solid substrates for applications in organic electronics. J. Mater. Res. 19, 1889 (2004).Google Scholar
Dodabalapur, A., Katz, H.E., Torsi, L., and Haddon, R.C.: Organic heterostructure field-effect transistors. Science 269, 1560 (1995).Google Scholar
Steinkopf, W., Leitsmann, R., and Hofmann, K.H.: Study of the thiophene series. LVII About alpha-polythienyls. Justus Liebigs Ann. Chem. 546, 180 (1941).Google Scholar
Sakamoto, Y., Komatsu, S., and Suzuki, T.: Tetradecafluorosexithiophene: The first perfluorinated oligothiophene. J. Am. Chem. Soc. 123, 4643 (2001).Google Scholar
Sakamoto, Y., Komatsu, S., and Suzuki, T.: Properties and crystal structure of perfluoro-α-sexithiophene. Synth. Met. 133, 361 (2003).Google Scholar
Horowitz, G., Bachet, B., Yassar, A., Lang, P., Demanze, F., Fave, J-L., and Garnier, F.: Growth and characterization of sexithiophene single crystals. Chem. Mater. 7, 1337 (1995).CrossRefGoogle Scholar
Servet, B., Ries, S., Trotel, M., Alnot, P., Horowitz, G., and Garnier, F.: X-ray determination of the crystal structure and orientation of vacuum evaporated sexithiophene films. Adv. Mater. 5, 461 (1993).Google Scholar
Servet, B., Horowitz, G., Ries, S., Lagorsse, O., Alnot, P., Yassar, A., Deloffre, F., Srivastava, P., and Hajlaoui, R.: Polymorphism and charge transport in vacuum-evaporated sexithiophene films. Chem. Mater. 6, 1809 (1994).Google Scholar
Moser, A., Salzmann, I., Oehzelt, M., Neuhold, A., Flesch, H-G., Ivanco, J., Pop, S., Toader, T., Zahn, D.R., Smilgies, D-M., and Resel, R.: A disordered layered phase in thin films of sexithiophene. Chem. Phys. Lett. 574, 51 (2013).Google Scholar
Lorch, C., Banerjee, R., Frank, C., Dieterle, J., Hinderhofer, A., Gerlach, A., and Schreiber, F.: Growth of competing crystal phases of α-sexithiophene studied by real-time X-ray scattering. J. Phys. Chem. C 119, 819 (2015).Google Scholar
Klett, B., Cocchi, C., Pithan, L., Kowarik, S., and Draxl, C.: Polymorphism in α-sexithiophene crystals: Relative stability and transition path. Phys. Chem. Chem. Phys. 18, 14603 (2016).Google Scholar
Amsalem, P., Niederhausen, J., Wilke, A., Heimel, G., Schlesinger, R., Winkler, S., Vollmer, A., Rabe, J.P., and Koch, N.: Role of charge transfer, dipole–dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 035440 (2013).Google Scholar
Blinov, L.M., Palto, S.P., Ruani, G., Taliani, C., Tevosov, A.A., Yudin, S.G., and Zamboni, R.: Location of charge transfer states in alpha-sexithienyl determined by the electroabsorption technique. Chem. Phys. Lett. 232, 401 (1995).Google Scholar
Taliani, C. and Blinov, L.M.: The electronic structure of solid α-sexithiophene. Adv. Mater. 8, 353 (1996).CrossRefGoogle Scholar
Duhm, S., Glowatzki, H., Cimpeanu, V., Klankermayer, J., Rabe, J.P., Johnson, R.L., and Koch, N.: Weak charge transfer between an acceptor molecule and metal surfaces enabling organic/metal energy level tuning. J. Phys. Chem. B 110, 21069 (2006).Google Scholar
Niederhausen, J., Amsalem, P., Wilke, A., Schlesinger, R., Winkler, S., Vollmer, A., Rabe, J.P., and Koch, N.: Doping of C60 (sub)monolayers by fermi-level pinning induced electron transfer. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 081411 (2012).Google Scholar
Broch, K., Heinemeyer, U., Hinderhofer, A., Anger, F., Scholz, R., Gerlach, A., and Schreiber, F.: Optical evidence for intermolecular coupling in mixed films of pentacene and perfluoropentacene. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 245307 (2011).CrossRefGoogle Scholar
Anger, F., Ossó, J.O., Heinemeyer, U., Broch, K., Scholz, R., Gerlach, A., and Schreiber, F.: Photoluminescence spectroscopy of pure pentacene, perfluoropentacene, and mixed thin films. J. Chem. Phys. 136, 054701 (2012).Google Scholar
Cabellos, J.L., Mowbray, D.J., Goiri, E., El-Sayed, A., Floreano, L., de Oteyza, D.G., Rogero, C., Ortega, J.E., and Rubio, A.: Understanding charge transfer in donor–acceptor/metal systems: A combined theoretical and experimental study. J. Phys. Chem. C 116, 17991 (2012).Google Scholar
Kolata, K., Breuer, T., Witte, G., and Chatterjee, S.: Molecular packing determines singlet exciton fission in organic semiconductors. ACS Nano 8, 7377 (2014).Google Scholar
Inoue, Y., Sakamoto, Y., Suzuki, T., Kobayashi, M., Gao, Y., and Tokito, S.: Organic thin-film transistors with high electron mobility based on perfluoropentacene. Jpn. J. Appl. Phys. 44, 3663 (2005).Google Scholar
Sakamoto, Y., Suzuki, T., Kobayashi, M., Gao, Y., Inoue, Y., and Tokito, S.: Perfluoropentacene and perfluorotetracene: Syntheses, crystal structures, and FET characteristics. Mol. Cryst. Liq. Cryst. 444, 225 (2006).Google Scholar
Hinderhofer, A., Heinemeyer, U., Gerlach, A., Kowarik, S., Jacobs, R.M.J., Sakamoto, Y., Suzuki, T., and Schreiber, F.: Optical properties of pentacene and perfluoropentacene thin films. J. Chem. Phys. 127, 194705 (2007).Google Scholar
Koch, N., Vollmer, A., Duhm, S., Sakamoto, Y., and Suzuki, T.: The effect of fluorination on pentacene/gold interface energetics and charge reorganization energy. Adv. Mater. 19, 112 (2007).Google Scholar
Kowarik, S., Gerlach, A., Hinderhofer, A., Milita, S., Borgatti, F., Zontone, F., Suzuki, T., Biscarini, F., and Schreiber, F.: Structure, morphology, and growth dynamics of perfluoro-pentacene thin films. Phys. Status Solidi RRL 2, 120 (2008).Google Scholar
Salzmann, I., Duhm, S., Heimel, G., Rabe, J.P., Koch, N., Oehzelt, M., Sakamoto, Y., and Suzuki, T.: Structural order in perfluoropentacene thin films and heterostructures with pentacene. Langmuir 24, 7294 (2008).CrossRefGoogle ScholarPubMed
Salzmann, I., Duhm, S., Heimel, G., Oehzelt, M., Kniprath, R., Johnson, R.L., Rabe, J.P., and Koch, N.: Tuning the ionization energy of organic semiconductor films: The role of intramolecular polar bonds. J. Am. Chem. Soc. 130, 12870 (2008).Google Scholar
Heinemeyer, U., Broch, K., Hinderhofer, A., Kytka, M., Scholz, R., Gerlach, A., and Schreiber, F.: Real-time changes in the optical spectrum of organic semiconducting films and their thickness regimes during growth. Phys. Rev. Lett. 104, 257401 (2010).Google Scholar
Hinderhofer, A., Frank, C., Hosokai, T., Resta, A., Gerlach, A., and Schreiber, F.: Structure and morphology of coevaporated pentacene-perfluoropentacene thin films. J. Chem. Phys. 134, 104702 (2011).Google Scholar
Kera, S., Hosoumi, S., Sato, K., Fukagawa, H., Nagamatsu, S-i., Sakamoto, Y., Suzuki, T., Huang, H., Chen, W., Wee, A.T.S., Coropceanu, V., and Ueno, N.: Experimental reorganization energies of pentacene and perfluoropentacene: Effects of perfluorination. J. Phys. Chem. C 117, 22428 (2013).Google Scholar
El-Sayed, A., Borghetti, P., Goiri, E., Rogero, C., Floreano, L., Lovat, G., Mowbray, D.J., Cabellos, J.L., Wakayama, Y., Rubio, A., Ortega, J.E., and de Oteyza, D.G.: Understanding energy-level alignment in donor–acceptor/metal interfaces from core-level shifts. ACS Nano 7, 6914 (2013).Google Scholar
Broch, K., Bürker, C., Dieterle, J., Krause, S., Gerlach, A., and Schreiber, F.: Impact of molecular tilt angle on the absorption spectra of pentacene:perfluoropentacene blends. Phys. Status Solidi RRL 7, 1084 (2013).Google Scholar
Frank, C., Novák, J., Gerlach, A., Ligorio, G., Broch, K., Hinderhofer, A., Aufderheide, A., Banerjee, R., Nervo, R., and Schreiber, F.: Real-time X-ray scattering studies on temperature dependence of perfluoropentacene thin film growth. J. Appl. Phys. 114, 043515 (2013).Google Scholar
Savu, S-A., Sonström, A., Bula, R., Bettinger, H.F., Chassé, T., and Casu, M.B.: Intercorrelation of electronic, structural, and morphological properties in nanorods of 2,3,9,10-tetrafluoropentacene. ACS Appl. Mater. Interfaces 7, 19774 (2015).CrossRefGoogle Scholar
Chen, H-Y. and Chao, I.: Effect of perfluorination on the charge transport properties of organic semiconductors: Density functional theory study of perfluorinated pentacene and sexithiophene. Chem. Phys. Lett. 401, 539 (2005).Google Scholar
Medina, B.M., Beljonne, D., Egelhaaf, H-J., and Gierschner, J.: Effect of fluorination on the electronic structure and optical excitations of π-conjugated molecules. J. Chem. Phys. 126, 111101 (2007).Google Scholar
Hamano, K., Kurata, T., Kubota, S., and Koezuka, H.: Organic molecular beam deposition of α-sexithienyl. Jpn. J. Appl. Phys. 33, L1031 (1994).Google Scholar
Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793 (1997).Google Scholar
Schreiber, F.: Organic molecular beam deposition: Growth studies beyond the first monolayer. Phys. Status Solidi A 201, 1037 (2004).Google Scholar
Hinderhofer, A. and Schreiber, F.: Organic–organic heterostructures: Concepts and applications. ChemPhysChem 13, 628 (2012).Google Scholar
Ritley, K.A., Krause, B., Schreiber, F., and Dosch, H.: A portable ultrahigh vacuum organic molecular beam deposition system for in situ X-ray diffraction measurements. Rev. Sci. Instrum. 72, 1453 (2001).Google Scholar
Willmott, P.R., Meister, D., Leake, S.J., Lange, M., Bergamaschi, A., Böge, M., Calvi, M., Cancellieri, C., Casati, N., Cervellino, A., Chen, Q., David, C., Flechsig, U., Gozzo, F., Henrich, B., Jäggi-Spielmann, S., Jakob, B., Kalichava, I., Karvinen, P., Krempasky, J., Lüdeke, A., Lüscher, R., Maag, S., Quitmann, C., Reinle-Schmitt, M.L., Schmidt, T., Schmitt, B., Streun, A., Vartiainen, I., Vitins, M., Wang, X., and Wullschleger, R.: The materials science beamline upgrade at the swiss light source. J. Synchrotron Radiat. 20, 667 (2013).Google Scholar
Supplementary Material.Google Scholar
Johnson, D.W.: A fourier series method for numerical Kramers-Kronig analysis. J. Phys. A: Math. Gen. 8, 490 (1975).Google Scholar
Beltzer, A.I.: Kramers–Kronig relationships and wave propagation in composites. J. Acoust. Soc. Am. 73, 355 (1983).Google Scholar
Jones, A.O.F., Chattopadhyay, B., Geerts, Y.H., and Resel, R.: Substrate-induced and thin-film phases: Polymorphism of organic materials on surfaces. Adv. Funct. Mater. 26, 2233 (2016).CrossRefGoogle Scholar
Ambrosch-Draxl, C., Nabok, D., Puschnig, P., and Meisenbichler, C.: The role of polymorphism in organic thin films: Oligoacenes investigated from first principles. New J. Phys. 11, 125010 (2009).Google Scholar
Mattheus, C.C., Dros, A.B., Baas, J., Meetsma, A., Boer, J.L.d., and Palstra, T.T.M.: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).Google Scholar
Schiefer, S., Huth, M., Dobrinevski, A., and Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316 (2007).Google Scholar
Kowarik, S., Gerlach, A., Leitenberger, W., Hu, J., Witte, G., Wöll, C., Pietsch, U., and Schreiber, F.: Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films. Thin Solid Films 515, 5606 (2007).CrossRefGoogle Scholar
Kowarik, S., Gerlach, A., Sellner, S., Schreiber, F., Cavalcanti, L., and Konovalov, O.: Real-time observation of structural and orientational transitions during growth of organic thin films. Phys. Rev. Lett. 96, 125504 (2006).Google Scholar
Kakudate, T., Yoshimoto, N., and Saito, Y.: Polymorphism in pentacene thin films on SiO2 substrate. Appl. Phys. Lett. 90, 081903 (2007).Google Scholar
Bauer, E. and Poppa, H.: Recent advances in epitaxy. Thin Solid Films 12, 167 (1972).Google Scholar
Schwoebel, R.L. and Shipsey, E.J.: Step motion on crystal surfaces. J. Appl. Phys. 37, 3682 (1966).Google Scholar
Ehrlich, G. and Hudda, F.G.: Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44, 1039 (1966).Google Scholar
Zhang, Z. and Lagally, M.: Atomistic processes in the early stages of thin-film growth. Science 276, 377 (1997).Google Scholar
Liu, S. and Metiu, H.: Inter-layer diffusion and motion of adatoms in the vicinity of steps. Surf. Sci. 359, 245 (1996).Google Scholar
Feibelman, P.J.: Interlayer self-diffusion on stepped Pt(111). Phys. Rev. Lett. 81, 168 (1998).Google Scholar
Feibelman, P.: Ordering of self-diffusion barrier energies on pt (110)-(1 × 2). Phys. Rev. B: Condens. Matter Mater. Phys. 61, R2452 (2000).Google Scholar
Venables, J.A.: Rate equation approaches to thin film nucleation kinetics. Philos. Mag. 27, 697 (1973).Google Scholar
Venables, J.A., Spiller, G.D.T., and Hanbücken, M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).Google Scholar
Venables, J.A.: Atomic processes in crystal growth. Surf. Sci. 299, 798 (1994).Google Scholar
Bruch, L.W., Diehl, R.D., and Venables, J.A.: Progress in the measurement and modeling of physisorbed layers. Rev. Mod. Phys. 79, 1381 (2007).Google Scholar
Villain, J., Pimpinelli, A., Tang, L., and Wolf, D.: Terrace sizes in molecular beam epitaxy. J. Phys. 2, 2107 (1992).Google Scholar
Biscarini, F., Samori, P., Greco, O., and Zamboni, R.: Scaling behavior of anisotropic organic thin films grown in high vacuum. Phys. Rev. Lett. 78, 2389 (1997).Google Scholar
Marks, R.N., Biscarini, F., Virgili, T., Muccini, M., Zamboni, R., and Taliani, C.: The growth and characterization of α-sexithienyl-based light-emitting diodes. Philos. Trans. R. Soc., A 355, 763 (1997).Google Scholar
Sassella, A., Campione, M., Raimondo, L., Tavazzi, S., Borghesi, A., Goletti, C., Bussetti, G., and Chiaradia, P.: Epitaxial growth of organic heterostructures: Morphology, structure, and growth mode. Surf. Sci. 601, 2571 (2007).CrossRefGoogle Scholar
Quan, B., Yu, S-H., Chung, D.Y., Jin, A., Park, J.H., Sung, Y-E., and Piao, Y.: Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 4, 7 (2014).Google Scholar
Oeter, D., Ziegler, C., and Göpel, W.: Doping and stability of ultrapure α-oligothiophene thin films. Synth. Met. 61, 147 (1993).Google Scholar
Salaneck, W.R., Inganäs, O., Thémans, B., Nilsson, J.O., Sjögren, B., Österholm, J-E., Brédas, J.L., and Svensson, S.: Thermochromism in poly(3-hexylthiophene) in the solid state: A spectroscopic study of temperature-dependent conformational defects. J. Chem. Phys. 89, 4613 (1988).Google Scholar
Shrotriya, V., Ouyang, J., Tseng, R.J., Li, G., and Yang, Y.: Absorption spectra modification in poly(3-hexylthiophene): Methanofullerene blend thin films. Chem. Phys. Lett. 411, 138 (2005).Google Scholar
Lachkar, A., Selmani, A., and Sacher, E.: Metallization of polythiophenes II. Interaction of vapor-deposited Cr, V and Ti with poly(3-hexylthiophene) (P3HT). Synth. Met. 72, 73 (1995).Google Scholar
Manceau, M., Gaume, J., Rivaton, A., Gardette, J-L., Monier, G., and Bideux, L.: Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy. Thin Solid Films 518, 7113 (2010).Google Scholar
Opitz, A., Wilke, A., Amsalem, P., Oehzelt, M., Blum, R-P., Rabe, J.P., Mizokuro, T., Hörmann, U., Hansson, R., Moons, E., and Koch, N.: Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution. Sci. Rep. 6, 21291 (2016).CrossRefGoogle ScholarPubMed
Yoshida, H., Yamada, K., Tsutsumi, J., and Sato, N.: Complete description of ionization energy and electron affinity in organic solids: Determining contributions from electronic polarization, energy band dispersion, and molecular orientation. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 8 (2015).CrossRefGoogle Scholar
Bruggeman, D.A.G.: Calculation of various physical constants of heterogeneous substances. I. Dielectric constants and conductivity of solids mixed of isotropic substances. Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
Popovic, D.M., Milosavljevic, V., Zekic, A., Romcevic, N., and Daniels, S.: Raman scattering analysis of silicon dioxide single crystal treated by direct current plasma discharge. Appl. Phys. Lett. 98, 051503 (2011).Google Scholar
Degli Esposti, A., Fanti, M., Muccini, M., Taliani, C., and Ruani, G.: The polarized infrared and Raman spectra of α-T6 single crystal: An experimental and theoretical study. J. Chem. Phys. 112, 5957 (2000).Google Scholar
Supplementary material: PDF

Reisz supplementary material S1

Reisz supplementary material

Download Reisz supplementary material S1(PDF)
PDF 289.3 KB
Supplementary material: File

Reisz supplementary material S2

Reisz supplementary material

Download Reisz supplementary material S2(File)
File 2.1 KB