Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:50:58.939Z Has data issue: false hasContentIssue false

Structural features of core–shell zeolite–zeolite composite and its performance for methanol conversion into gasoline and diesel

Published online by Cambridge University Press:  06 June 2016

Jiajun Zheng*
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
Xiaobo Sun
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
Yanze Du
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China; and Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC Fushun 113001, China
Bo Qin
Affiliation:
Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC Fushun 113001, China
Yanyu Zhang
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
Hongyan Zhang
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
Meng Pan
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
Ruifeng Li*
Affiliation:
Research Centre of Energy Chemical & Catalytic Technology, Taiyuan University of Technology, Taiyuan 030024, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Zeolite–zeolite composite composed of alumina-rich hierarchically porous ZSM-5 cores and high-silicon MFI shells was prepared by a hydrothermal synthesis procedure, in which a commercial ZSM-5 zeolite with a SiO2/Al2O3 of 36 was treated by an alkaline solution and then used as a supporter for epitaxial growth of a polycrystalline Silicalite-1 zeolite shell (denoted as MMZsa). Acid sites associated with framework Al on exterior surfaces of ZSM-5 zeolite cores are therefore passivated in different degrees by the epitaxial MFI zeolite shell. The structural, crystalline, and textural properties of the as-synthesized samples were characterized by x-ray powder diffraction (XRD), energy-dispersive x-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), N2 adsorption-desorption, in situ IR spectra of pyridine and NH3-TPD. Aluminum species were observed to transfer from the alumina-rich cores to the high-silica shells. The adjustable thickness and SiO2/Al2O3 ratio of the shell offer the as-synthesized composite a potential and high-efficiency catalyst for methanol conversion into gasoline and diesel. As compared with the commercial ZSM-5 zeolite, the composite catalyst exhibits excellent catalytic performances with a longer catalytic life as well as a higher conversion and a slightly higher yield of diesel oil.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghorbanpour, A., Gumidyala, A., Grabow, L.C., Crossley, S.P., and Rimer, J.D.: Epitaxial growth of ZSM-5@silicalite-1: A core–shell zeolite designed with passivated surface acidity. ACS Nano 9, 4006 (2015).CrossRefGoogle ScholarPubMed
Isaev, Y. and Fripiat, J.J.: A Lewis acid site-activated reaction in zeolites: Thiophene acylation by butyryl chloride. J. Catal. 182, 257 (1999).Google Scholar
Garralón, G., Fornés, V., and Corma, A.: Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation. Zeolites 8, 268 (1988).CrossRefGoogle Scholar
Shen, B.J., Qin, Z.X., Gao, X.H., Lin, F., Zhou, S.G., Shen, W., Wang, B.J., Zhao, H.J., and Liu, H.H.: Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y. Chin. J. Catal. 33, 152 (2012).Google Scholar
Qin, Z.X., Shen, B.J., Yu, Z.W., Deng, F., Zhao, L., Zhou, S., Yuan, D.L., Gao, X.H., Wang, B.J., Zhao, H.J., and Liu, H.H.: A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J. Catal. 298, 102 (2013).Google Scholar
Enterría, M., Suárez-García, F., Martínez-Alonso, A., and Tascón, J.M.D.: Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. J. Alloys Compd. 583, 60 (2014).Google Scholar
Jia, L.X., Sun, X.Y., Ye, X.Q., Zou, C.L., Gu, H.F., Huang, Y., Niu, G.X., and Zhao, D.Y.: Core–shell composite of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Microporous Mesoporous Mater. 176, 16 (2013).CrossRefGoogle Scholar
Al-Khattaf, S.: Catalytic transformation of toluene over a high-acidity Y-zeolite based catalyst. Energy Fuels 20, 946 (2006).Google Scholar
Odedairo, T. and Al-Khattaf, S.: Kinetic investigation of benzene ethylation with ethanol over USY zeolite in a riser simulator. Ind. Eng. Chem. Res. 49, 1642 (2010).Google Scholar
Agostini, G., Lamberti, C., Palin, L., Milanesio, M., Danilina, N., Xu, B., Janousch, M., and van Bokhoven, J.A.: In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 132, 667 (2010).CrossRefGoogle ScholarPubMed
Ma, D., Deng, F., Fu, R.Q., Han, X.W., and Bao, X.H.: Mas NMR studies on the dealumination of zeolite MCM-22. J. Phys. Chem. B 105, 1770 (2001).Google Scholar
Maier, S.M., Jentys, A., and Lercher, J.A.: Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study. J. Phys. Chem. C 115, 8005 (2011).CrossRefGoogle Scholar
Aramburo, L.R., Karwacki, L., Cubillas, P., Asahina, S., Matthijs de Winter, D.A., Drury, M.R., Buurmans, I.L.C., Stavitski, E., Mores, D., Daturi, M., Bazin, P., Dumas, P., Thibault-Starzyk, F., Post, J.A., Anderson, M.W., Terasaki, O., and Weckhuysen, B.M.: The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chem.–Eur. J. 17, 13773 (2011).Google Scholar
Qin, Z., Lakiss, L., Gilson, J-P., Thomas, K., Goupil, J-M., Fernandez, C., and Valtchev, V.: Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity, and catalytic activity. Chem. Mater. 25, 2759 (2013).Google Scholar
Chandra Shekara, B.M., Jai Prakash, B.S., and Bhat, Y.S.: Dealumination of zeolite BEA under microwave irradiation. ACS Catal. 1, 193 (2011).Google Scholar
Kao, H.M. and Chen, Y.C.: 27Al and 19F solid-state NMR studies of zeolite H-β dealuminated with ammonium hexafluorosilicate. J. Phys. Chem. B 107, 3367 (2003).Google Scholar
Triantafillidis, C.S. and Evmiridis, N.P.: Dealuminated H-Y zeolites: Influence of the number and type of acid sites on the catalytic activity for isopropanol dehydration. Ind. Eng. Chem. Res. 39, 3233 (2000).CrossRefGoogle Scholar
Triantafillidis, C.S., Vlessidis, A.G., and Evmiridis, N.P.: Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolits. Ind. Eng. Chem. Res. 39, 307 (2000).CrossRefGoogle Scholar
van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong, K.P.: Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev. 45, 297 (2003).CrossRefGoogle Scholar
Lin, X.Y., Fan, Y., Shi, G., Liu, H.Y., and Bao, X.J.: Coking, and deactivation behavior Of HZSM-5 zeolite-based FCC gasoline hydro-upgrading catalyst. Energy Fuels 21, 2517 (2007).Google Scholar
Abudawood, R.H., Alotaibi, F.M., and Garforth, A.A.: Hydroisomerization of n-heptane over Pt-loaded USY zeolite. Effect of steaming, dealumination, and the resulting structure on catalytic properties. Ind. Eng. Chem. Res. 50, 9918 (2011).CrossRefGoogle Scholar
Hibino, T., Niwa, M., and Murakami, Y.: Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J. Catal. 128, 551 (1991).CrossRefGoogle Scholar
Kim, J.H., Ishida, A., Okajima, M., and Niwa, M.: Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity. J. Catal. 161, 387 (1996).CrossRefGoogle Scholar
Cejka, J., Zilkova, N., Wichterlova, B., Elder-Mirth, G., and Lercher, J.A.: Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites 17, 265 (1996).CrossRefGoogle Scholar
Zheng, S., Tanaka, H., Jentys, A., and Lercher, J.A.: Novel model explaining toluene diffusion in HZSM-5 after surface modification. J. Phys. Chem. B 108, 1337 (2004).CrossRefGoogle Scholar
Chen, N.Y., Kaeding, W.W., and Dwyer, F.G.: Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783 (1979).CrossRefGoogle Scholar
Kaeding, W.W., Chu, C., Young, L.B., Weinstein, B., and Butter, S.A.: Selective alkylation of toluene with methanol to produce para-Xylene. J. Catal. 67, 159 (1981).CrossRefGoogle Scholar
Parker, W.O., de Angelis, Jr. A., Flego, C., Millini, R., Perego, C., Zanardi, S.: Unexpected destructive dealumination of zeolite beta by silylation. J. Phys. Chem. C 114, 8459 (2010).CrossRefGoogle Scholar
Moreira, C.R., Herbst, M.H., de la Piscina, P.R., Fierro, J-L.G., Homs, N., and Pereira, M.M.: Evidence of multi-component interaction in a V-Ce-HUSY catalyst: Is the cerium-EFAL interaction the key of vanadium trapping. Microporous Mesoporous Mater. 115, 253 (2008).Google Scholar
Duan, X.P., Teng, Y., Wang, A.J., Kogan, V.M., Li, X., and Wang, Y.: Role of sulfur in hydrotreating catalysis over nickel phosphide. J. Catal. 261, 232 (2009).CrossRefGoogle Scholar
Bando, K.K., Koike, Y., Kawai, T., Tateno, G., Oyama, S.T., Inada, Y., Nomura, M., and Asakura, K.: Quick x-ray absorption fine structure studies on the activation process of Ni2P supported on K-USY. J. Phys. Chem. C 115, 7466 (2011).Google Scholar
Lutz, W., Toufar, H., Heidemann, D., Salman, N., Rüscher, C.H., and Gesing, T.M., Buhl, J-Chr., Bertram, R.: Siliceous extra-framework species in dealuminated Y zeolites generated by steaming. Microporous Mesoporous Mater. 104, 171 (2007).CrossRefGoogle Scholar
Féron, B., Gallezot, P., and Bourgogne, M.: Hydrothermal aging of cracking catalysts: V. Vanadium passivation by rare-earth compounds soluble in the feedstock. J. Catal. 134, 469 (1992).Google Scholar
Goossens, A.M., Wouters, B.H., Grobet, P.J., Buschmann, V., Fiermans, L., and Martens, J.A.: Synthesis and characterization of epitaxial FAU-on-EMT zeolite overgrowth materials. Eur. J. Inorg. Chem. 5, 1167 (2001).Google Scholar
Yonkeu, A.L., Miehe, G., Fuess, H., Goossens, A.M., and Martens, J.A.: A new overgrowth of mazzite on faujasite zeolite crystal investigated by x-ray diffraction and electron microscopy. Microporous Mesoporous Mater. 96, 396 (2006).Google Scholar
Miyamoto, M., Kamei, T., Nishiyama, N., Egashira, Y., and Ueyama, K.: Single crystals of ZSM-5/Silicalites composites. Adv. Mater. 17, 1985 (2005).Google Scholar
Okamoto, M. and Osafune, Y.: MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Microporous Mesoporous Mater. 143, 413 (2011).Google Scholar
Zhang, X.W., Guo, Q., Qin, B., Zhang, Z.Z., Ling, F.X., Sun, W.F., and Li, R.F.: Structural features of binary microporous zeolite composite Y-beta and its hydrocracking performance. Catal. Today 149, 212 (2010).CrossRefGoogle Scholar
Zheng, J.J., Zhang, X.W., Wang, Y., Bai, Y.D., Sun, W.F., and Li, R.F.: Synthesis and catalytic performance of a bi-phase core-shell zeolite composite. J. Porous Mater. 16, 731 (2009).Google Scholar
Ohsuna, T., Terasaki, O., Nakagawa, Y., Zones, S.I., and Hiraga, K.: Electron microscopic study of intergrowth of MFI and MEL: Crystal faults in B-MEL. J. Phys. Chem. B 101, 9881 (1997).Google Scholar
Kloetstra, K.R., Zandbergen, H.W., Jansen, J.C., and van Bekkum, H.: Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater. 6, 287 (1996).CrossRefGoogle Scholar
Qian, X.F., Du, J.M., Li, B., Si, M., Yang, Y.S., Hu, Y.Y., Niu, G.X., Zhang, Y.H., Xu, H.L., Tu, B., Tang, Y., and Zhao, D.Y.: Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).Google Scholar
Rollmann, L.D.: ZSM-5 containing alumin-free shells on its surface. USA Patent, 4088605, May 9, 1978.Google Scholar
Kong, D.J., Zou, W., Zheng, J.L., Qi, X.L., and Fang, D.Y.: Crystallization kinetics and influencing factors in the syntheses of MFI/MFI core–shell zeolites. Acta Chim. Sin. 25, 1921 (2009).Google Scholar
Zhou, Y.X., Tong, W.Y., Zou, W., Qi, X.L., and Kong, D.J.: Manufacture of b-oriented ZSM-5/silicalite-1 core/shell structured zeolite catalyst. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45, 1356 (2015).CrossRefGoogle Scholar
Lee, C.S., Park, T.J., and Lee, W.Y.: Alkylation of toluene over double structure ZSM-5 type catalysts covered with a silicalite shell. Appl. Catal., A 96, 151 (1993).CrossRefGoogle Scholar
Li, Q.H., Wang, Z., Hedlund, J., Creaser, D., Zhang, H., Zou, X.D., and Bons, A-J.: Synthesis and characterization of colloidal zoned MFI crystals. Microporous Mesoporous Mater. 78, 1 (2005).CrossRefGoogle Scholar
Vu, D.V., Miyamoto, M., Nishiyama, N., Ichikawa, S., Egashira, Y., and Ueyama, K.: Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous Mesoporous Mater. 115, 106 (2008).Google Scholar
Vu, D.V., Miyamoto, M., Nishiyama, N., Egashira, Y., and Ueyama, K.: Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. J. Catal. 243, 389 (2006).Google Scholar
Ogura, M., Shinomiya, S., Tateno, J., Nara, Y., Nomura, M., Kikuchi, E., and Matsukata, M.: Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal., A 219, 33 (2001).CrossRefGoogle Scholar
Xue, Z.T., Ma, J.H., Zhang, T., Miao, H.X., and Li, R.F.: Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Mater. Lett. 68, 1 (2012).CrossRefGoogle Scholar
Liu, R., Ren, Y., Shi, Y., Zhang, F., Zhang, L., Tu, B., and Zhao, D.: Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater. 20, 1140 (2008).Google Scholar
Zheng, J.J., Zeng, Q.H., Zhang, Y.Y., Wang, Y., Ma, J.H., Zhang, X.W., Sun, W.F., and Li, R.F.: Hierarchical porous zeolite composite with a core–shell structure fabricated using β-zeolite crystals as nutrients as well as cores. Chem. Mater. 22, 6065 (2010).CrossRefGoogle Scholar
Zhang, Q.Q., Ming, W.X., Ma, J.H., Zhang, J.L., Wang, P., and Li, R.F.: De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J. Mater. Chem. A 2, 8712 (2014).Google Scholar
Wang, Z.P., Li, C., Cho, H.J., Kung, S-C., Snyder, M.A., and Fan, W.: Direct, single-step synthesis of hierarchical zeolites without secondary templating. J. Mater. Chem. A 3, 1298 (2015).Google Scholar
Wang, C., Yang, M., Tian, P., Xu, S.T., Yang, Y., Wang, D.H., Yuan, Y.Y., and Liu, Z.M.: Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 3, 5608 (2015).CrossRefGoogle Scholar
Groen, J.C., Peffer, L.A.A., Moulijn, J.A., and Pérez-Ramírez, J.: On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater. 69, 29 (2004).CrossRefGoogle Scholar
Jung, J.S., Park, J.W., and Seo, G.: Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl. Catal., A 288, 149 (2005).CrossRefGoogle Scholar
Saxena, S.K., Viswanadham, N., and Sharma, T.: Breakthrough mesopore creation in BEA and its enhanced catalytic performance in solvent-free liquid phase tert-butylation of phenol. J. Mater. Chem. A 2, 2487 (2014).Google Scholar
Aguayo, A.T., Gayubo, A.G., Ereña, J., Vivanco, R., and Bilbao, J.: Study of the regeneration stage of the MTG process in a pseudoadiabatic fixed bed reactor. Chem. Eng. J. 92, 141 (2003).CrossRefGoogle Scholar
Keil, F.J.: Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29, 49 (1999).Google Scholar
Stöcker, M.: Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3 (1999).Google Scholar
Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., and Olsbye, U.: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 249, 195 (2007).Google Scholar
Liu, Z.P., Fan, W.M., Ma, J.H., and Li, R.F.: Adsorption, diffusion and catalysis of mesostructured zeolite HZSM-5. Adsorption 18, 493 (2012).CrossRefGoogle Scholar
Lee, S., Kim, H., and Choi, M.: Controlled decationization of X zeolite: mesopore generation within zeolite crystallites for bulky molecular adsorption and transformation. J. Mater. Chem. A 1, 12096 (2013).Google Scholar
Li, J.H., Wang, Y.N., Jia, W.Z., Xi, Z.W., Chen, H.H., Zhu, Z.R., and Hu, Z.H.: Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. J. Energy Chem. 23, 771 (2014).Google Scholar
Fan, D., Tian, P., Su, X., Yuan, Y.Y., Wang, D.H., Wang, C., Yang, M., Wang, L.Y., Xu, S.T., and Liu, Z.M.: Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction. J. Mater. Chem. A 1, 14206 (2013).Google Scholar