Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T13:02:04.705Z Has data issue: false hasContentIssue false

Structural evolution and phase separation of CaO · Al2O3 · SiO2 glasses in an electric field

Published online by Cambridge University Press:  31 January 2011

W. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
X. M. Gu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Y. K. Zheng
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
K. M. Liang
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Get access

Abstract

In the present paper, the process of phase separation in calcium aluminosilicate glasses (CAS glasses) containing TiO2 as a nucleating agent is studied. A static electric field promotes the process of phase separation even when the time of heat treatment is short. The effect of electric field on phase separation acts through the higher polarizability of Ti ions. Alkali ions, when present, will diffuse toward the cathode, which may generate different micromorphology at the parts of samples near the cathode and the anode. X-ray photoelectron spectroscopy and Raman spectra analysis confirm the conclusion that the electric field has promoted phase separation in CAS glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jiang, Z.H. and Ding, Y., J. Chin. Ceram. Soc. 17, 153 (1989).Google Scholar
2.Luo, L. and Li, J.Z., J. Chin. Ceram. Soc. 17, 31 (1989).Google Scholar
3.Zou, X.L., Yamane, M., Li, J.Z., and Wang, C.Y., J. Non-Cryst. Solids 112, 268 (1989).Google Scholar
4.Fan, X.P. and Chen, Q.Q., J. Non-Cryst. Solids 112, 232 (1989).Google Scholar
5.de Vekey, R.C. and Majumdar, A.J., Nature 225, 172 (1970).CrossRefGoogle Scholar
6.Hopper, R.W. and Ulhmann, D.R., Phy. Chem. Glasses 14, 37 (1973).Google Scholar
7.Liu, W., Liang, K.M., Zheng, Y.K., Gu, S.R., and Chen, H., J. Phys. D: Appl. Phys. 30, 3366 (1997).CrossRefGoogle Scholar
8.Yin, L.I., Chose, S., and Adler, J., Science 173, 633 (1971).CrossRefGoogle Scholar
9.Balzarotti, A. and Bianconi, A., Phys. Status. Solid B 76, 689 (1976).CrossRefGoogle Scholar
10.Haber, J. and Unger, L., J. Electron Spectrosc. Relat. Phenom. 12, 305 (1977).CrossRefGoogle Scholar
11.Hass, M., J. Phys. Chem. Solids 31, 415 (1970).CrossRefGoogle Scholar
12.Duan, R.G. and Liang, K.M., Mater. Sci. Eng. A 249, 217 (1998).CrossRefGoogle Scholar
13.Gan, F.X., Huang, G.S. and Chen, S.Z., J. Non-Cryst. Solids 52, 203 (1982).CrossRefGoogle Scholar
14.Brawer, S.A. and White, W.B., J. Chem. Phys. 63, 2421 (1975).CrossRefGoogle Scholar
15.Brawer, S.A. and White, W.B., J. Non-Cryst. Solids 23, 261 (1977).CrossRefGoogle Scholar
16.Bruckner, R., Chun, H.U., Goretzki, H., and Sammet, M., J. Non-Cryst. Solids 42, 49 (1980).CrossRefGoogle Scholar
17.Bates, J.B., Hendricks, R.W., and Shaffer, L.B., J. Chem. Phys. 61, 4163 (1974).CrossRefGoogle Scholar
18.Melmem, H. and Garofalini, S.H., J. Non-Cryst. Solids 134, 107 (1991).CrossRefGoogle Scholar
19.Murdoch, J.B., Stebbins, J.F., and Camichael, I.S.E, Am. Mineral. 70, 332 (1985).Google Scholar
20.Mysen, B., Contrib. Mineral. Petrol. 96, 333 (1997).Google Scholar
21.McMillan, P.F., Am. Mineral. 69, 645 (1984).Google Scholar