Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T17:48:07.509Z Has data issue: false hasContentIssue false

Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles

Published online by Cambridge University Press:  12 April 2013

Tokeer Ahmad*
Affiliation:
Department of Chemistry, Nanochemistry Laboratory, Jamia Millia Islamia, New Delhi-110025, India
Sarvari Khatoon
Affiliation:
Department of Chemistry, Nanochemistry Laboratory, Jamia Millia Islamia, New Delhi-110025, India
Kelsey Coolahan
Affiliation:
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028
Samuel E. Lofland
Affiliation:
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple and modified solvothermal method using oxalate precursor, used to synthesize Cd1−xNixO (x = 0.047, 0.102, and 0.163) nanoparticles and their phase structure, morphology, optical and magnetic properties, have been investigated. X-ray diffraction studies revealed that as-prepared Ni-doped CdO solid solutions are highly crystalline and stabilized in a monophasic cubic CdO structure. X-ray diffraction and ICP-MS studies confirmed the incorporation of Ni2+ in a CdO matrix. The average grain size was found to be 30, 15, and 11 nm, respectively, using transmission electron microscopic studies. High surface area in the range of 118–143 m2/g has been achieved for these solid solutions using the multipoint BET method, which increases on increasing Ni concentration in Cd lattice site. The optical band gap of these solid solutions shows red shift to the undoped CdO. Ni-doped CdO nanoparticles exhibit co-existence of paramagnetism and ferromagnetism.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhao, Z., Morel, D.L., and Ferekides, C.S.: Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition. Thin Solid Films 413, 203 (2002).CrossRefGoogle Scholar
Su, L.M., Grote, N., and Schmitt, F.: Diffused planar InP bipolar transistor with a cadmium oxide film emitter. Electron. Lett. 20, 716 (1984).CrossRefGoogle Scholar
Lewis, B.G. and Paine, D.C.: Applications and processing of transparent conducting oxides. Mater. Res. Soc. Bull. 25, 22 (2000).CrossRefGoogle Scholar
Yan, M., Lane, M., Kannewurf, C.R., and Chang, R.P.H.: Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 78, 2342 (2001).CrossRefGoogle Scholar
Baedeker, K.: By the electrical conductivity and the thermoelectric power of some heavy metal compounds. Ann. Phys. 22, 749 (1907).Google Scholar
Kammler, D.R., Mason, T.O., Young, D.L., Coutts, T.J., Ko, D., Poeppelmeier, K.R., and Williamson, D.L.: Comparison of thin film and bulk forms of the transparent conducting oxide solution Cd1+xIn2−2xSnxO4. J. Appl. Phys. 90, 5979 (2001).CrossRefGoogle Scholar
Mason, T.O., Gonzalez, G.B., Kammler, D.R., Hadavi, N.M., and Ingram, B.J.: Defect chemistry and physical properties of transparent conducting oxides in the CdO-In O -SnO system. Thin Solid Films 411, 106 (2002).CrossRefGoogle Scholar
Metz, A.W., Ireland, J.R., Zheng, J.G., Lobo, R.P.S.M., Yang, Y., Ni, J., Stern, C.L., Dravid, V.P., Bontemps, N., Kannewurf, C.R., Poeppelmeier, K.R., and Marks, T.J.: Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor. J. Am. Chem. Soc. 126, 8477 (2004).CrossRefGoogle ScholarPubMed
Jin, S., Yang, Y., Medvedeva, J.E., Ireland, J.R., Metz, A.W., Ni, J., Kannewurf, C.R., Freeman, A.J., and Marks, T.J.: Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD. J. Am. Chem. Soc. 126, 13787 (2004).CrossRefGoogle ScholarPubMed
Ferekides, C.S., Mamazza, R., Balasubramanian, U., and Morel, D.L.: Transparent conductors and buffer layers for CdTe solar cells. Thin Solid Films 480, 224 (2005).CrossRefGoogle Scholar
Wang, A., Babcock, J.R., Edleman, N.L., Metz, A.W., Lane, M.A., Asahi, R., Dravid, V.P., and Kannewurf, C.R.: Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors. Proc. Natl. Acad. Sci. USA 98, 7113 (2001).CrossRefGoogle ScholarPubMed
Ali, H.M., Mohamed, H.A., Wakkad, M.M., and Hasaneen, M.F.: Properties of transparent conducting oxides formed from CdO alloyed with In2O3. Thin Solid Films 515, 3024 (2007).CrossRefGoogle Scholar
Flores, M.A., Castanedo, R., Torres, G., and Zelaya, O.: Optical, electrical and structural properties of indium-doped cadmium oxide films obtained by the sol-gel technique. Sol. Energy Mater. Sol. Cells 93, 28 (2009).CrossRefGoogle Scholar
Maity, R. and Chattopadhyay, K.K.: Synthesis and characterization of aluminum-doped CdO thin films by sol-gel process. Sol. Energy Mater. Sol. Cells 90, 597 (2006).CrossRefGoogle Scholar
Yang, Y., Jin, S., Medvedeva, J.E., Ireland, J.R., Metz, A.W., Ni, J., Hersam, M.C., Freeman, A.J., and Marks, T.J.: CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. J. Am. Chem. Soc. 127, 8796 (2005).CrossRefGoogle ScholarPubMed
Dakhel, A.A.: Electrical and optical properties of iron-doped CdO. Thin Solid Films 518, 1712 (2010).CrossRefGoogle Scholar
Dakhel, A.A.: Correlated transport and optical phenomena in Ga-doped CdO films. Sol. Energy 82, 513 (2008).CrossRefGoogle Scholar
Srihar, V., Sridharan, V., Chandra, S., Sastry, V.S., Sahu, H.K., and Sundar, C.S.: Wide band gap tunability of bulk Cd1−xCaxO. J. Appl. Phys. 109, 013510 (2011).CrossRefGoogle Scholar
Yakuphanoglu, F.: Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method. J. Sol. Gel Sci. Technol. 59, 569 (2011).CrossRefGoogle Scholar
Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ganguli, A.K., and Ahmad, T.: Silver nanoparticles: Large scale solvothermal synthesis and optical properties Mater. Res. Bull. 45, 1033 (2010).CrossRefGoogle Scholar
Khatoon, S. and Ahmad, T.: Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Mater. Sci. Eng., B 2(6), 325 (2012).Google Scholar
Cong, C.J., Liao, L., Li, J.C., Fan, L.X., and Zhang, K.L.: Synthesis, structure and ferromagnetic properties of Mn-doped ZnO nanoparticles. Nanotechology 16, 981 (2005).CrossRefGoogle Scholar
Cong, C.J., Liao, L., Liu, Q.Y., Li, J.C., and Zhang, K.L.: Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related raman vibration. Nanotechnology 17, 1520 (2006).CrossRefGoogle Scholar
Thota, S., Dutta, T., and Kumar, J.: On the sol-gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J. Phys. Condens. Matter 18, 2473 (2006).CrossRefGoogle Scholar
Donkova, B.V., Milenova, K.I., and Mehandjiev, D.R.: Investigation on the catalytic activity of doped low-percentage oxide catalysts Mn/ZnO obtained from oxalate precursor. Cent. Eur. J. Chem. 6, 115 (2008).Google Scholar
Ahmad, T., Khatoon, S., and Coolahan, K.: Optical, magnetic and structural characterization of Zn1−xCoxO nanoparticles synthesized by solvothermal method. Bull. Mater. Sci. Accepted, Ms. No. BOMS-D-12–00330R1 (2013).CrossRefGoogle Scholar
Khatoon, S., Coolahan, K., Lofland, S.E., and Ahmad, T.: Optical and magnetic properties of solid solutions of In2−xMnxO3 (0.05, 0.10 and 0.15) nanoparticles. J. Alloys Compd. 545, 162 (2012).CrossRefGoogle Scholar
Ahmad, T., Khatoon, S., Coolahan, K., and Lofland, S.E.: Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1−xMnxO (0.04 < x = 0.10) solid solutions. J. Alloys Compd. 558, 117 (2013).CrossRefGoogle Scholar
Birks, L.S. and Friedman, H.: Particle size determination from x-ray line broadening. J. Appl. Phys. 17, 687 (1946).CrossRefGoogle Scholar
Warren, B.E. and Averbach, B.L.: The effect of cold work distortion on x-ray patterns. J. Appl. Phys. 21, 595 (1950).CrossRefGoogle Scholar
Warren, B.E. and Averbach, B.L.: The separation of cold work distortion and particle size broadening in x-ray patterns. J. Appl. Phys. 23, 497 (1952).CrossRefGoogle Scholar
Kortum, G.: Reflectance Spectroscopy: Principles, Methods, Applications (Springer, New York, 1969).CrossRefGoogle Scholar
Kotru, P.N., Razdan, A.K., and Wanklyn, B.M.: Imperfections and impurity phases in flux grown RCrO3 (R = La, Yb) single crystals. J. Mater. Sci. 24, 2401 (1989).CrossRefGoogle Scholar
Prakash, S.M.D. and Rao, P.M.: Microhardness investigations on gel-grown barium cadmium oxalate mixed crystals. Cryst. Res. Technol. 22, 1095 (1987).CrossRefGoogle Scholar
Kamruddin, M., Ajikumar, P.K., Nithya, R., Mangamma, G., Tyagi, A.K., and Raj, B.: Effect of water of crystallization on synthesis of nanocrystalline ceria by non-hydrolytic method. Powder Technol. 161, 145 (2006).CrossRefGoogle Scholar
Jones, G.C. and Jackson, B.: Infrared Transmission Spectra of Carbonate Minerals (Springer, Chapman and Hall, Netherlands, 1993).CrossRefGoogle Scholar
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986).Google Scholar
Prakash, S.M.D. and Rao, P.M.: Infrared absorption spectra of Ba1−xCdxC2O4.2.5 H2O. Cryst. Res. Technol. 23, K143 (1988).Google Scholar
Bacce, E.D., Pires, A.M., Davalos, M.R., and Jafelicci, M. Jr.: Thermal decomposition and rehydration of strontium oxalate: Morphological evolution. Int. J. Inorg. Mater. 3, 443 (2001).CrossRefGoogle Scholar
Raj, A.M.E., Jayanthi, D.D., Jothy, V.B., Jayachandran, M., and Sanjeeviraja, C.: Crystal structure and thermal characterization of cadmium oxalate [CdC2O4.3H2O] and barium-doped cadmium oxalate [Ba0.5Cd0.5(C2O4)2.5H2O] single crystals grown in silica gel. Inorg. Chim. Acta 362, 1535 (2009).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).CrossRefGoogle Scholar
De Baisi, R.S. and Grillo, M.L.N.: Influence of manganese concentration on the electron magnetic resonance spectrum of Mn2+ in CdO. J. Alloys Compd. 485, 26 (2009).CrossRefGoogle Scholar
Rajkumar, N., Susila, V.M., and Ramachandran, K.: On the possibility of ferromagnetism in CdO: Mn at room temperature. J. Exp. Nanosci. 6, 389 (2011).CrossRefGoogle Scholar
Wei, X., Xu, G., Ren, Z., Wang, Y., Shen, G., and Han, G.: Size-controlled synthesis of BaTiO3 nanocrystals via a hydrothermal route. Mater. Lett. 62, 3666 (2008).CrossRefGoogle Scholar
Lee, S.J., Kang, K.Y., Han, S.K., Jang, M.S., Chae, B.G., Yang, Y.S., and Kim, S.H.: Phase formation and ferroelectricity of sol-gel derived (Pb, La)TiO3 thin films. Appl. Phys. Lett. 72, 299 (1998).CrossRefGoogle Scholar
Jefferson, P.H., Hatfield, S.A., Veal, T.D., King, P.D.C., Mc Connville, C.F., Perez, J.Z., and Sanjose, V.M.: Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (2008).CrossRefGoogle Scholar
Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Sarma, S.D., Drew, H.D., Greene, R.L., and Venkatesan, T.: High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 077205 (2003).CrossRefGoogle ScholarPubMed
Bouloudenine, M., Viart, N., Colis, S., and Dinia, A.: Bulk Zn1−xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem. Phys. Lett. 397, 73 (2004).CrossRefGoogle Scholar
Colis, S., Bieber, H., Colin, S.B., Schmerber, G., Leuvrey, C., and Dinia, A.: Magnetic properties of Co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis. Chem. Phys. Lett. 422, 529 (2006).CrossRefGoogle Scholar
Bouaine, A., Brihi, N., Schmerber, G., Bouillet, C.U., Colis, S., and Dinia, A.: Structural, optical and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C 111, 2924 (2007).CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
Barick, K.C., Aslam, M., Dravid, V.P., and Bahadur, D.: Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 112, 15163 (2008).CrossRefGoogle Scholar
Ohno, H., Munekata, H., Penney, T., Von Molnar, S., and Chang, L.L.: Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664 (1992).CrossRefGoogle ScholarPubMed
Ahn, G.Y., Park, S.I., Shim, I.B., and Cim, C.S.: Mossbauer studies of ferromagnetism in Fe-doped ZnO magnetic semiconductor. J. Magn. Magn. Mater. 282, 166 (2004).CrossRefGoogle Scholar
Jayakumar, O.D., Gopalakrishnan, I.K., Kadam, R.M., Vinu, A., Asthana, A., and Tyagi, A.K.: Magnetization and structural studies of Mn doped ZnO nanoparticles: Prepared by reverse micelle method. J. Cryst. Growth 300, 358 (2007).CrossRefGoogle Scholar