Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T20:01:19.788Z Has data issue: false hasContentIssue false

Structural characterization of a new layered-ternary Ta4AlC3 ceramic

Published online by Cambridge University Press:  03 March 2011

Z.J. Lin
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
M.J. Zhuo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Bulk Ta4AlC3, a new layered-ternary carbide in the Ta–Al–C system, was synthesized and characterized. Transmission electron microscopy investigations on this new phase are reported here. Selected area electron diffraction and convergent beam electron diffraction analyses indicated that this ternary carbide crystallized with the space group P63/mmc. Atomic-scale microstructures of Ta4AlC3 were achieved by means of high-resolution transmission electron microscopy and Z-contrast scanning transmission electron microscopy. The experimental crystal structural parameters agreed well with the theoretical values obtained using density-functional calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kral, C., Lengauer, W., Rafaja, D., Ettmayer, P.: Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J. Alloys Compd. 265, 215 (1998).CrossRefGoogle Scholar
2.Liermann, H.P., Singh, A.K., Manoun, B., Saxena, S.K., Zha, C.S.: Compression behavior of TaC0.98 under nonhydrostatic and quasi-hydrostatic pressures up to 76 GPa. Int. J. Refract. Met. Hard Mater. 23, 109 (2005).CrossRefGoogle Scholar
3.Desmaison-Brut, M., Alexandre, N., Desmaison, J.: Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17, 1325 (1997).Google Scholar
4.Shimada, S., Johnsson, M., Urbonaite, S.: Thermoanalytical study on oxidation of TaC1−x Nx powders by simultaneous TG-DTA-MS technique. Thermochim. Acta 419, 143 (2004).CrossRefGoogle Scholar
5.Pietzka, M.A., Schuster, J.C.: Summary of constitutional data on the aluminum−carbon−titanium system. J. Phase Equilib. 15, 392 (1994).CrossRefGoogle Scholar
6.Wang, X.H., Zhou, Y.C.: Microstructure and properties of Ti3AlC2 prepared by solid−liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3141 (2002).CrossRefGoogle Scholar
7.Wang, X.H., Zhou, Y.C.: High-temperature oxidation of Ti2AlC in air. Oxid. Met. 59, 303 (2003).Google Scholar
8.Schuster, J.C., Nowotny, H.: Investigations of the ternary systems (Zr, Hf, Nb, Ta)–Al–C and studies on complex carbides. Z. Metallkd. 71, 341 (1980).Google Scholar
9.Ma, X.L., Zhu, Y.L., Wang, X.H., Zhou, Y.C.: Microstructural characterization of bulk Ti3AlC2 ceramics. Philos. Mag. 84, 2969 (2004).CrossRefGoogle Scholar
10.Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 54, 1009 (2006).Google Scholar
11.Barsoum, M.W.: The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201 (2000).Google Scholar
12.Palmquist, J.P., El-Raghy, T., Howing, J., Wilhemsson, O., Sundberg, M. Crystal structure and TEM characterization of Ta4AlC3, Abstract #ICACC-S1-184-2006, 30th Intern. Conf. Advanced Ceram. & Composites (Cocoa Beach, FL, Jan. 22–27 2006).Google Scholar
13.Manoun, B., Saxena, S.K., El-Raghy, T., Barsoum, M.W.: High-pressure x-ray diffraction study of Ta4AlC3. Appl. Phys. Lett. 88, 201902 (2006).CrossRefGoogle Scholar
14.Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
15.Vanderbilt, D.: Soft self consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
16.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).Google Scholar
17.Pfrommer, B.G., Côté, M., Louie, S.G., Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).CrossRefGoogle Scholar
18.Wang, J.Y., Zhou, Y.C.: Dependence of elastic stiffness on electronic band structure of nanolaminate M 2AlC (M = Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69, 214111 (2004).CrossRefGoogle Scholar
19.Wang, J.Y., Zhou, Y.C., Lin, Z.J., Meng, F.L., Li, F.: Raman active phonon modes and heat capacities of Ti2AlC and Cr2AlC ceramics: First-principles and experimental investigations. Appl. Phys. Lett. 86, 101902 (2005).CrossRefGoogle Scholar
20.Arunajatesan, S., Carim, A.H.: Symmetry and crystal structure of Ti3SiC2. Mater. Lett. 20, 319 (1994).Google Scholar
21.Hahn, T.: International Tables for Crystallography, Vol. A: Space-Group Symmetry (Kluwer, Dordrecht, The Netherlands, 1989).Google Scholar
22.Rawn, C.J., Barsoum, M.W., El-Raghy, T., Procipio, A., Hoffmann, C.M., Hubbard, C.R.: Structure of Ti4AlN3—A layered M n+1AXn nitride. Mater. Res. Bull. 35, 1785 (2000).Google Scholar
23.Sun, Z.M., Zhou, Y.C.: Electronic structure and structural properties of Ti4AlN3 investigated by ab initio calculations. J. Phys. Soc. Jpn. 71, 1313 (2002).Google Scholar
24.Zhou, Y.C., Wang, X.H., Sun, Z.M., Chen, S.Q.: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 (2001).CrossRefGoogle Scholar
25.Pennycook, S.J., Boatner, L.A.: Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565 (1988).CrossRefGoogle Scholar
26.Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Atomic scale characterization of layered ternary Cr2AlC ceramic. J. Appl. Phys. 99, 076109 (2006).Google Scholar