Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:05:53.688Z Has data issue: false hasContentIssue false

Structural and photoluminescence properties of laser processed ZnO/carbon nanotube nanohybrids

Published online by Cambridge University Press:  31 January 2011

Brahim Aïssa
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, QC, Canada J3X 1S2
Christian Fauteux
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, QC, Canada J3X 1S2
My A. El Khakani*
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, QC, Canada J3X 1S2
Daniel Therriault
Affiliation:
Department of Mechanical Engineering, École Polytechnique de Montréal, Montreal, QC, Canada H3C 3A7
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Zinc oxide (ZnO)/carbon-nanotubular-structures (CNTS) nanohybrids were grown using a three-step laser process. First, an ultraviolet (UV) laser (KrF) was used to deposit Co/Ni catalyst nanoparticles (NP) directly onto SiO2/Si substrates. Second, a random network of CNTS was grown onto these Co/Ni-catalyzed substrates by using the UV-laser ablation method. Finally, ZnO nanostructures were grown onto the CNTS template by means of the CO2 laser-induced chemical liquid deposition technique. While the laterally grown CNTS mainly consist of nanotube bundles featuring a high aspect ratio (diameter of ∼20 nm and length of up to several microns), the ZnO nanostructures were found to consist of various morphologies including nanorods, polypods, and nanoparticles with a size as small as 2 nm. The ZnO/CNTS nanohybrids were found to exhibit a polychromatic photoluminescent (PL) emission, at room temperature, comprising a narrow near-UV band centered around 390 nm, a broad visible to near infrared band (500–900 nm), and a relatively weak emission band centered around 1000 nm. These PL results are compared to those of individual components (CNTS and ZnO) and discussed in terms of carbon defect density and possible charge transfer between the ZnO nanocrystals and the carbon nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rao, C.N.R., Satishkumar, B.C., Govindaraj, A., and Nath, M.: Nanotubes. Chem. Phys. Chem. 2, 78 (2001).3.0.CO;2-7>CrossRefGoogle ScholarPubMed
2.Fullam, S., Cottel, D., Rensmo, H., and Fitzmaurice, D.: Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater. 12, 1430 (2000).3.0.CO;2-8>CrossRefGoogle Scholar
3.Endo, M., Kim, Y.A., Ezaka, M., Osada, K., Yanagisawa, T., Hayashi, T., Terrones, M., and Dresselhaus, M.S.: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett. 3, 723 (2003).Google Scholar
4.Han, W.Q. and Zettl, A.: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).CrossRefGoogle Scholar
5.Byrappa, K., Dayananda, A.S., Sajan, C.P., Basavalingu, B., Shayan, M.B., Soga, K., and Yoshimura, M.: Hydrothermal preparation of ZnO/CNT and TiO2/CNT composites and their photocatalytic applications. J. Mater. Sci. 43, 2348 (2008).Google Scholar
6.Baibarac, M., Baltog, I., Lefrant, S., Mevellec, J.Y., and Husanua, M.: Vibrational and photoluminescence properties of composites based on zinc oxide and single-walled carbon nanotubes. Physica E 40, 2556 (2008).CrossRefGoogle Scholar
7.Banerjee, D., Jo, S.H., and Ren, Z.F.: Enhanced field emission of ZnO nanowires. Adv. Mater. 16, 2028 (2004).CrossRefGoogle Scholar
8.Vietmeyer, F., Seger, B., and Kamat, P.V.: Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Adv. Mater. 19, 2935 (2007).Google Scholar
9.Bae, S., Seo, H., Choi, H., and Park, J.: Heterostructures of ZnO nanorods with various one-dimensional nanostructures. J. Phys. Chem. B 108, 12318 (2004).CrossRefGoogle Scholar
10.Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubesThe route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
11.Ajayan, P.M. and Zhou, O.Z.: Carbon nanotubes. Top. Appl. Phys. 80, 391 (2001).Google Scholar
12.Liu, J., Li, X., and Dai, L.: Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater. 18, 1740 (2006).CrossRefGoogle Scholar
13. M.A. El Khakani and Yi, J-H.: The nanostructure and electrical properties of SWNT bundle networks grown by an all-laser growth process for nanoelectronic device applications. Nanotechnology 15, S534 (2004).Google Scholar
14.Khakani, M.A.El, Yi, J.H., and Assa, B.: Lateral growth of single wall carbon nanotubes on various substrates by means of an alllaser synthesis approach. Diamond Relat. Mater. 15, 1064 (2006).Google Scholar
15.Fauteux, C., Khakani, M.A.El, Pegna, J., and Therriault, D.: Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition. Appl. Phys. A 94, 819 (2008).CrossRefGoogle Scholar
16.Braidy, N., Khakani, M.A.El, and Botton, G.A.: Carbon nanotubular structures synthesis by means of ultraviolet laser ablation. J. Mater. Res. 17, 2189 (2002).CrossRefGoogle Scholar
17.Wang, X., Xia, B., Zhu, X., Chen, J., Qiu, S., and Li, J.: Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures. J. Solid State Chem. 181, 822 (2008).CrossRefGoogle Scholar
18.Wei, A., Sun, X.W., Xu, C.X., Dong, Z.L., Yang, Y., Tan, S.T., and Huang, W.: Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 17, 1740 (2006).Google Scholar
19.Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., and Eklund, P.C.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779 (1998).CrossRefGoogle Scholar
20.Li, W., Zhang, H., Wang, C., Zhang, Y., Xu, L., Zhu, K., and Xie, S.: Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70, 2684 (1997).CrossRefGoogle Scholar
21.Scott, J.F.: UV resonant Raman scattering in ZnO. Phys. Rev. B 2, 1209 (1970).CrossRefGoogle Scholar
22.Huang, Y., Liu, M., Li, Z., Zeng, Y., and Liu, S.: Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mater. Sci. Eng., B 97, 111 (2003).CrossRefGoogle Scholar
23.Jang, J.W., Lee, C.E., Lyu, S.C., Lee, T.J., and Lee, C.J.: Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84, 2877 (2004).CrossRefGoogle Scholar
24.Futsuhara, M., Yoshioka, K., and Takai, O.: Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274 (1998).CrossRefGoogle Scholar
25.Fu, L., Liu, Z., Liu, Y., Han, B., Hu, P., Cao, L., and Zhu, D.: Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv. Mater. 17, 217 (2005).CrossRefGoogle Scholar
26.Shan, Y. and Gao, L.: Synthesis and characterization of phase controllable ZrO2carbon nanotube nanocomposites. Nanotechnology 16, 625 (2005).CrossRefGoogle Scholar
27.Kovtyukhova, N.I., Mallouk, T.E., Pan, L., and Dickey, E.C.: Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 125, 9761 (2003).Google Scholar
28.Liu, M., Yang, Y., Zhu, T., and Liu, Z.: Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43, 1470 (2005).CrossRefGoogle Scholar
29.Matsuda, K., Kanemitsu, Y., Irie, K., Saiki, T., and Someya, T.: Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature. Appl. Phys. Lett. 86, 123116 (2005).CrossRefGoogle Scholar
30.Guo, J., Yang, C., Li, Z.M., Bai, M., Liu, H.J., Li, G.D., Wang, E.G., Chan, C.T., Tang, Z.K., Ge, W.K., and Xiao, X.: Efficient visible photoluminescence from carbon nanotubes in zeolite templates. Phys. Rev. Lett. 93, 017402 (2004).Google Scholar
31.Brennan, M.E., Coleman, J.N., Drury, A., Lahr, B., Kobayashi, T. and Blau, W.J.: Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett. 28(4), 266 (2003).CrossRefGoogle Scholar
32.Henley, A.J., Carey, J.D., and Silva, S.R.P.: Room temperature photoluminescence from nanostructured amorphous carbon. Appl. Phys. Lett. 85, 6236 (2004).CrossRefGoogle Scholar
33.Lin, Y., Zhou, B., Martin, R.B., Henbest, K.B., Harruff, B.A., Riggs, J.E., Guo, Z-X., Allard, L.F., and Sun, Y-P.: Visible luminescence of carbon nanotubes and dependence on functionalization. J. Phys. Chem. B 109, 14779 (2005).CrossRefGoogle ScholarPubMed
34.Zhang, R., Fan, L., Fang, Y., and Yang, S.: Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem. 18, 4964 (2008).CrossRefGoogle Scholar