Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T18:47:12.890Z Has data issue: false hasContentIssue false

Structural and magnetotransport studies of magnetic ion doping for monovalent-doped LaMnO3 manganites

Published online by Cambridge University Press:  04 June 2014

Dinesh Varshney*
Affiliation:
Materials Science Laboratory, School of Physics, Vigyan Bhawan, Devi Ahilya University, Indore 452001, India
Neha Dodiya
Affiliation:
Materials Science Laboratory, School of Physics, Vigyan Bhawan, Devi Ahilya University, Indore 452001, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, we report the structural, electrical, and magnetic properties of polycrystalline La0.85–xSmxNa0.15MnO3 (x = 0.05, 0.1, 0.15) manganites. Rietveld refinement of x-ray data infers that doped manganite compounds possess a rhombohedrally distorted structure (space group $R\bar 3C$). Both lattice parameter and unit cell volume decrease and a systematic change in both Mn–O–Mn bond angle and tolerance factor is observed with Sm content. Resistivity measurements discern metal–insulator transition (TP). For x = 0.15 sample, a double metal–insulator transition with a single ferromagnetic transition is depicted. All samples exhibit extrinsic magnetoresistance (MR) effect. A large value of MR of 65% (253 K, 8 T) is associated with grain and grain boundary formation. The highest low-field MR of 23% (12 K, 2 T) and 35.2% (23 K, 2 T) for x = 0.05 and 0.1 is observed. The electronic and magnetic inhomogeneities induced by Sm and nonmagnetic metal Na phases account for MR properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Salamon, M.B. and Jaime, M.: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583 (2001).Google Scholar
Rao, G.H., Sun, J.R., Barner, K., and Hamad, N.: Crystal structure and magnetoresistance of Na-doped LaMnO3 . J. Phys.: Condens. Matter 11, 1523 (1999).Google Scholar
Ye, S.L., Song, W.H., Dai, J.M., Wang, K.Y., Wang, S.G., Du, J.J., Sun, Y.P., Fang, J., Chen, J.L., and Gao, B.J.: Large room-temperature magnetoresistance and phase separation in La1-x Na x MnO3 with 0.1≤ x ≤ 0.3. J. Appl. Phys. 90, 2943 (2001).Google Scholar
Asthana, S., Bahadur, D., Nigam, A., and Malik, S.K.: Magneto-transport studies on (Pr1/3Sm2/3)2/3A1/3MnO3 (A = Ca, Sr and Ba) compounds. J. Phys.: Condens. Matter 16, 5297 (2004).Google Scholar
Fontcuberta, J., Martınez, B., Seffar, A., Pinol, S., Garcia-Munoz, J.L., and Obradors, X.: Colossal magnetoresistance of ferromagnetic manganites: Structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122 (1996).Google Scholar
Tovstolytkin, A.I., Pogorily, A.M., Podyalovskii, D.I., Kalita, V.M., Lozenko, A.F., Trotsenko, P.O., Ryabchenko, S.M., Belous, A.G., Vunov, O.I., and Yanchevskii, O.Z.: Vacancy-induced enhancement of magnetic interactions in (Ca, Na)-doped lanthanum manganites. J. Appl. Phys. 102, 063902 (2007).Google Scholar
Qixiang, S., Guiying, W., Guoqing, Y., Qiang, M., Wenqi, W., and Zhensheng, P.: Influence of the substitution of Sm, Gd, and Dy for La in La0.7Sr0.3MnO3 on its magnetic and electric properties and strengthening effect on room-temperature CMR. J. Rare Earths 26, 821 (2008).Google Scholar
Wang, Z.M., Ni, G., Sanga, H., and Du, Y.W.: The effect of average A-site cation radius on T C in perovskite manganites. J. Magn. Magn. Mater. 234, 213 (2001).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A 32, 751 (1976).Google Scholar
Rodriguez-Carvajal, J.: FULLPROF Version 3.0.0 (Laboratoire Leon Brillouin, CEA–CNRS, 1995).Google Scholar
Varshney, D., Dodiya, N., and Shaikh, M.W.: Structural properties and electrical resistivity of Na-substituted lanthanum manganites: La1-xNaxMnO3 (x = 0.1, 0.125 and 0.15). J. Alloys Compd. 509, 7447 (2011).CrossRefGoogle Scholar
Mahendiran, R., Tiwary, S.K., Raychaudhuri, A.K., and Ramakrishnan, T.V.: Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys. Rev. B 53, 3348 (1996).Google Scholar
Roy, S., Guo, Y.Q., Venkatesh, S., and Ali, N.: Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys.: Condens. Matter 13, 9547 (2001).Google Scholar
Kalyana Lakshmia, Y., Venkataiaha, G., Vithalb, M., and Venugopal Reddy, P.: Magnetic and electrical behavior of La1-x A x MnO3 (A = Li, Na, K and Rb) manganites. Physica B 403, 3059 (2008).Google Scholar
Vergara, J., Ortega-Hertogs, R.J., Madurga, V., Sapina, F., El-Fadli, Z., Martinez, E., Beltran, A., and Rao, K.V.: Effect of disorder produced by cationic vacancies at the B sites on the electronic properties of mixed valence manganites. Phys. Rev. B 60, 1127 (1999).Google Scholar
Mazaheri, M. and Akhavan, M.: Electrical behavior of nano-polycrystalline (La1-y K y )0.7Ba0.3MnO3 manganites. J. Magn. Magn. Mater. 322, 3255 (2010).CrossRefGoogle Scholar
Venkataiah, G., Kalyana Lakshmi, Y., and Venugopal Reddy, P.: Thermopower studies of Pr0.67D0.33MnO3 manganite system. J. Phys. D: Appl. Phys. 40, 721 (2007).Google Scholar
Awana, V.P.S., Tripathi, R., Kumar, N., Kishan, H., Bhalla, G.L., Zeng, R., Sharth Chandra, L.S., Ganesan, V., and Habermeier, H.U.: Magnetotransport of La0.7Ca0.3−x Sr x MnO3 (Ag): A potential room temperature bolometer and magnetic sensor. J. Appl. Phys. 107, 09D723 (2010).Google Scholar
Awana, V.P.S., Tripathi, R., Balamurugan, S., Kishan, H., and Takayama-Muromachi, E.: Magneto-transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Ag polycrystalline composites. Solid State Commun. 40, 410415 (2006).Google Scholar
Dodiya, N. and Varshney, D.: Structural properties and Raman spectroscopy of rhombohedral La1-x Na x MnO3 with (0.075 ≤ x ≤ 0.15). J. Mol. Struct. 1031, 104 (2013).Google Scholar
Wu, D., Deng, Y., Mak, C.L., Wong, K.H., Li, A.D., Zhang, M.S., and Min, N.B.: Raman scattering study of La-, Nd and Sm-substituted Bi4Ti3O12 . Appl. Phys. A: Mater. Sci. Process 80, 607 (2005).CrossRefGoogle Scholar
Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1-x Sr x MnO3 . Phys. Rev. B 51, 14103 (1995).Google Scholar
Fulde, P. and Jensen, J.: Electronic heat capacity of the rare-earth metals. Phys. Rev. B 27, 4085 (1983).CrossRefGoogle Scholar
Kubo, K. and Ohata, N.: A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21 (1972).Google Scholar
Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S.W.: Low temperature magnetoresistance and the magnetic phase diagram of La1-x Ca x MnO3 . Phys. Rev. Lett. 75, 3336 (1995).CrossRefGoogle Scholar
Kalyana Lakshmi, Y., Venkataiah, G., and Venugopal Reddy, P.: Magnetoelectric behavior of sodium doped lanthanum manganites. J. Appl. Phys. 106, 023707 (2009).Google Scholar
Ghivelder, L., Castillo, I.A., McN Alford, N., Tomka, G.J., Riedi, P.C., MacManus-Driscoll, J., Akther Hossain, A.K.M., and Cohen, L.F.: Specific heat of La1-x Ca x MnO3-δ . J. Magn. Magn. Mater. 189, 274 (1998).CrossRefGoogle Scholar
Varshney, D. and Dodiya, N.: Electrical resistivity of alkali metal doped manganites La x A y Mn w O3 (A= Na, K, Rb): Role of electron-phonon, electron-electron and electron-magnon interactions. Curr. Appl. Phys. 13, 11881198 (2013).CrossRefGoogle Scholar
Quijada, M., Cerne, J., Simpson, J.R., Drew, H.D., Ahn, K.H., Millis, A.J., Shreekala, R., Ramesh, R., Rajeswari, M., and Venkatesan, T.: Optical conductivity of manganites: Crossover from Jahn-Teller small polaron to coherent transport in the ferromagnetic state. Phys. Rev. B 58, 16093 (1998).Google Scholar
Malavasi, L., Ritter, C., Mozzati, M.C., Tealdi, C., Saiful Islam, M., Bruno Azzoni, C., and Flor, G.: Effects of cation vacancy distribution in doped LaMnO3+δ perovskites. J. Solid State Chem. 178, 2042 (2005).Google Scholar
Egilmez, M., Chow, K.H., Jung, J., Fan, I., Mansour, A.I., and Salman, Z.: Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm0.55Sr0.45MnO3 . Appl. Phys. Lett. 92, 132505 (2008).Google Scholar
Mannella, N., Yang, W.L., Tanaka, K., Zhou, X.J., Zheng, H., Mitchell, J.F., Zaanen, J., Devereaux, T.P., Nagaosa, N., Hussain, Z., and Shen, Z.X.: Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites. Phys. Rev. B 76, 233102 (2007).Google Scholar
Mannella, N., Yang, W.L., Zhou, X.J., Zheng, H., Mitchell, J.F., Zaanen, J., Devereaux, T.P., Nagaosa, N., Hussain, Z., and Shen, Z.X.: Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474 (2005).Google Scholar
Alexandrov, A.S. and Mott, N.F.: Polarons and Bipolarons (World Scientific, Singapore, 1995).Google Scholar
Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., and Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).Google Scholar
Tosi, M.P.: Of ionic solids in the Born model. Solid State Phys. 16, 1 (1964).Google Scholar
Hafemeister, D.W. and Flygare, W.H.: Outer-shell overlap integral as a function of distance for halogen-halogen, halogen-alkali, and alkali-alkali ions in the alkali halide lattices. J. Chem. Phys. 43, 795 (1965).Google Scholar
Slater, J.C. and Kirkwood, J.G.: The van der Waals forces in gases. Phys. Rev. 37, 682 (1931).Google Scholar
Markovich, V., Fita, I., Puzniak, R., Rozenberg, E., Martin, C., Wisniewski, A., Maignan, A., Raveau, B., Yuzhelevskii, Y., and Gorodetsky, G.: Effect of pressure on magnetic and transport properties of CaMn1−xRuxO3 (x = 0–0.15): Collapse of ferromagnetic phase in CaMn0.9Ru0.1O3. Phys. Rev. B 70, 024403 (2004).Google Scholar
Varshney, D., Dodiya, N.: Interpretation of metallic and semiconducting temperature dependent resistivity of La0.91Rb0.06Mn0.94O3 manganites. Solid State Sci. 13, 16231632 (2011).Google Scholar
Varshney, D., Dodiya, N.: Electrical resistivity of the hole doped La0.8Sr0.2MnO3 manganites: Role of electron–electron/phonon/magnon interactions. Mater. Chem. Phys. 129, 896904 (2011).Google Scholar
Marzari, N. and Vanderbilti, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).CrossRefGoogle Scholar
Millis, A.J.: Cooperative Jahn-Teller effect and electron-phonon coupling in La1-x A x MnO3 . Phys. Rev. B 53, 8434 (1996).Google Scholar