Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:21:07.499Z Has data issue: false hasContentIssue false

Structural and electrical properties of excess PbO doped Pb(Zr0.52Ti0.48)O3 thin films using rf magnetron sputtering method

Published online by Cambridge University Press:  31 January 2011

Tae Song Kim*
Affiliation:
Thin Film Technology Research Center, KIST, 39–1 Haweolgog-dong, Seongbuk-gu, Seoul 136–791, Korea
Dong Joo Kim
Affiliation:
Thin Film Technology Research Center, KIST, 39–1 Haweolgog-dong, Seongbuk-gu, Seoul 136–791, Korea
Jeon Kook Leea
Affiliation:
Thin Film Technology Research Center, KIST, 39–1 Haweolgog-dong, Seongbuk-gu, Seoul 136–791, Korea
Hyung Jin Jung
Affiliation:
Thin Film Technology Research Center, KIST, 39–1 Haweolgog-dong, Seongbuk-gu, Seoul 136–791, Korea
Get access

Abstract

Well-crystallized Pb(Zr0.52Ti0.48)O3 thin films (4000 Å thickness) can be synthesized on Pt/Ti/SiO2/Si(100) substrate at a temperature as low as 520 °C. The polycrystalline lead zirconate titanate (PZT) perovskite phase formation was confirmed with x-ray diffraction (XRD) analysis, and growth morphologies were studied with a scanning electron microscope (SEM). The electrical properties of PZT thin films were characterized through P-E hysteresis curve, dielectric constant, and loss, fatigue, and leakage current measurements. Remanent polarization (Pr) and coercive field (Ec) of as-grown film were 8–30 μC/cm2 and 24–64 kV/cm with the variation of applied voltage (5–15 V). The post-annealing enhances the electrical properties even at 500 °C, which is below the as-grown temperatures (520 °C). The average polarization loss after applying rectangular pulse (Vp-p = 10 V) up to 1011 cycles was 40.9% for a 300 μm small dot and 22% for a 500 μm large dot, which are relatively improved values for platinum electrode. The values of dielectric constant (ε′) and tan δ measured with small signal sign wave (1 V, 10 kHz) were 1207 and 0.066 in the case of as-grown film.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, J. T., Jr. and Womack, R., IEEE J. Solid-State Circuit 23, 1171 (1988).CrossRefGoogle Scholar
2.Parker, L. H. and Tasch, A. F., IEEE Circuits and Devices Magazine, Jan. 17 (1990).CrossRefGoogle Scholar
3.Polla, D. L., Ye, C., Schiller, P., Tamagawa, T., Robbins, W. P., Glumac, D., and Hsueh, C-C., in Ferroelectric Thin Films II, edited by Kingon, A., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 55.Google Scholar
4.Boyer, L. L., Wu, A. Y., and McNeil, J. R., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 97.Google Scholar
5.Auciello, O., Kingon, A. I., and Krupanidhi, S. B., MRS Bull. 21, 25 (1996).CrossRefGoogle Scholar
6.Whatmore, R. W., Kirby, P., Patel, A., Shorrocks, N. M., Bland, T., and Walker, M., Ferroelectric Thin Films for Capacitor and Sensor Applications, edited by Auciello, O. and Waser, R. (Kluwer Acad. Press, London, 1995), p. 383.Google Scholar
7.Tuttle, B. A., Schwartz, R. W., Doughty, D. H., and Voigt, J. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.Google Scholar
8.Bernstein, S. D., Kisler, Y., Wahl, J. M., Bernacki, S. E., and Collins, S. R., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 373.Google Scholar
9.Bernstein, S. D., Wong, T. Y., Collins, S. R., Kisler, Y., and Tustison, R. W., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 477.Google Scholar
10.Faure, S. P., Gaucher, P., and Ganne, J. P., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 129.Google Scholar
11.Hase, T. and Shiosaki, T., Jpn. J. Appl. Phys. 30, 2159 (1991).CrossRefGoogle Scholar
12.Sayer, M., Mansingh, A., Arora, A. K., and Lo, A., Integrated Ferroelectrics 1, 129 (1992).CrossRefGoogle Scholar
13.Lee, S. C., Teowee, G., Schrimpe, R. D., Birnie, D. P., III, Uhlmann, D. R., and Galloway, K. F., Integrated Ferroelectrics 4, 31 (1994).CrossRefGoogle Scholar
14.Scott, J. F., Melinck, B. M., Cuchiaro, J. D., Zueleeg, R., Araujo, C. A., McMillan, L. D., and Scott, M. C., Integrated Ferroelectrics 4, 85 (1994).CrossRefGoogle Scholar
15.Chen, X., Kingon, A. I., Mantese, L., Auciello, O., and Hsieh, K. Y., Integrated Ferroelectrics 3, 355 (1993).CrossRefGoogle Scholar
16.Desu, S. B. and Yoo, I. K., Integrated Ferroelectrics 3, 367 (1993).CrossRefGoogle Scholar