Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T20:06:38.844Z Has data issue: false hasContentIssue false

Stress–strain behaviors of 〈110〉-oriented Tb0.3Dy0.7Fe1.95 after magnetic annealing

Published online by Cambridge University Press:  31 January 2011

Mi Yan*
Affiliation:
Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Compressive stress–strain behaviors in a 〈110〉-oriented crystal Tb0.3Dy0.7Fe1.95 after magnetic annealing have been investigated under a series of quasi-static magnetic fields, attempting to add more insight into the corresponding domain-switching process. The magnetically annealed crystal outputs larger final strains than the untreated one, although it exhibits similar stress–strain behaviors. An obvious improvement also occurs in the initial Young's modulus E0 after magnetic annealing. The corresponding domain switching processes under compressive stress have been discussed. Non-180° domain processes are favored because of the specific initial domain states, which can be reflected by the shortening of the flat stage in magnetostriction–magnetic induction (λ–B) curve and the increase of the critical field where maximum forced magnetostriction constant d33 locates.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clark, A.E.Ferromagnetic Materials Vol. 1 edited by E.P. Wohlfarth (North-HollandAmsterdam 1980)531Google Scholar
2.Jiles, D.C.Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907 (2003)CrossRefGoogle Scholar
3.Jiang, C.B., Zhang, H.B., Wang, Z.B., Xu, H.B.Magnetostriction and hysteresis of 〈110〉 oriented Tb0.29Dy0.48Ho0.23Fe2 single crystal. J. Phys. D: Appl. Phys. 41, 155012 (2008)Google Scholar
4.Oblabi, A.G., Grunwald, A.Design and application of magnetostrictive materials. Mater. Des. 29, 469 (2008)CrossRefGoogle Scholar
5.Savage, H.T., Clark, A.E., Powers, J.M.Magnetomechanical coupling and ΔE effect in highly magnetostrictive rare earth–Fe2 compounds. IEEE Trans. Magn. 11, 1355 (1975)CrossRefGoogle Scholar
6.Clark, A.E., Restorff, J.B., Wun-Fogle, M., Lindberg, J.F.Magnetoelastic coupling and ΔE effect in TbxDy1−x single crystals. J. Appl. Phys. 73, 6150 (1993)CrossRefGoogle Scholar
7.Clark, A.E., Wun-Fogle, M., Teter, J.P., Restorff, J.B., Cheng, S.F.Magnetization, Young's moduli, and magnetostriction of rare-earth-iron eutectic alloys with R = Tb0.6Dy0.4. J. Appl. Phys. 76, 7009 (1994)CrossRefGoogle Scholar
8.Kellogg, R., Flatau, A.Experimental investigation of Terfenol-D's elastic modulus. J. Intell. Mater. Syst. Struct. 19, 583 (2008)CrossRefGoogle Scholar
9.Pei, Y.M., Fang, D.N.Young's modulus anisotropy and magnetomechanical damping of 〈110〉 oriented Tb0.3Dy0.7Fe1.95 alloy. Chin. Phys. Lett. 24, 1611 (2007)Google Scholar
10.Feng, X., Fang, D.N., Hwang, K.C., Wu, G.H.Ferroelastic properties of oriented TbxDy1−;xFe2 polycrystals. Appl. Phys. Lett. 83, 3960 (2003)Google Scholar
11.Ma, T.Y., Yan, M., Zhang, J.J., Luo, W., Jiang, C.B., Xu, H.B.Differential magnetostrictive response in magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 with 〈110〉 crystal orientation. Appl. Phys. Lett. 90, 102502 (2007)CrossRefGoogle Scholar
12.Ma, T.Y., Yan, M., Zhang, C.S., Pei, Y.M., Jiang, C.B.Stress influences on magnetization and magnetostriction in magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 polycrystals. J. Appl. Phys. 105, 093915 (2009)Google Scholar
13.Ma, T.Y., Jiang, C.B., Xu, X., Zhang, H., Xu, H.B.The Co-doped Tb0.36Dy0.64Fe2 magnetostrictive alloys with a wide operating temperature range. J. Magn. Magn. Mater. 292, 317 (2005)Google Scholar
14.Zhang, S.G., Xu, J., Zhang, S.R., Li, H.W., Yang, H.C., Yu, D.B., Yan, S.H., Yuan, Y.Q., Ying, Q.M., Li, Z.A., Zhao, B. China Patent No. ZL03156926. 9 (2003)Google Scholar
15.Pei, Y.M., Fang, D.N.Magnetomechanical hydraulic-servo apparatus for investigation of magnetomechanical coupling properties of magnetic materials. Rev. Sci. Instrum. 77, 086101 (2006)Google Scholar
16.Ma, T.Y., Zhang, J.J., Yan, M.Enhanced Young's moduli and damping capacity in magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 polycrystals. J. Phys. D: Appl. Phys. 42, 125004 (2009)CrossRefGoogle Scholar
17.Ma, T.Y., Zhang, C.S., Zhang, P., Yan, M.Effect of magnetic annealing on magnetostrictive performance of a 〈110〉 oriented crystal Tb0.3Dy0.7Fe1.95. J. Magn. Magn. Mater. 322, 1889 (2010)CrossRefGoogle Scholar