Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:59:55.088Z Has data issue: false hasContentIssue false

Stress Relaxation in Al–Cu and Al–Si–Cu Thin Films

Published online by Cambridge University Press:  31 January 2011

A. Witvrouw
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
J. Proost
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Ph. Roussel
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
P. Cosemans
Affiliation:
LUC, Institute for Materials Research, Materials Physics Division, Universitaire Campus, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

Substrate curvature measurements were used to study stress changes during thermal cycling and isothermal tensile stress relaxation in 800 nm Al–0.5 wt% Cu and Al–1 wt% Si–0.5 wt% Cu films. For both compositions dislocation glide can describe the relaxation data well for temperatures up to 120 °C for Al–Si–Cu and up to 100 °C for Al–Cu. The average activation energy for Al–Si–Cu and Al–Cu is 1.7 ± 0.2 eV and 3.0 ± 0.3 eV, respectively. The athermal flow stress is the same for both and equal to 600 ± 200 MPa. This result is consistent with the obstacles for glide being Al2Cu precipitates, which, in the case of Al–Si–Cu, are fine and can be cut by the dislocations, and, in the case of Al–Cu, are strong and provide Orowan strengthening. Also, the stress changes during thermal cycling in the Al–Cu films are different from those in the Al–Si–Cu films. For Al–Cu films, the room temperature stress decreases after each thermal cycle, while for Al–Si–Cu stress changes during thermal cycling are stable from the second cycle on. These observations are supported by thorough transmission electron microscopy (TEM) studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, J. F. and Wagner, I., Advanced Aluminum Metallization, Part I: Aluminum Thin Film Properties (1991 MRC Thin Film School), p. 2.Google Scholar
2.d'Heurle, F. M. and Ho, P. S., in Thin Films: Interdiffusion and Reactions, edited by Poate, J., Tu, K., and Mayer, J. (New York, 1978), p. 293.Google Scholar
3.Yu, J-S., Maniatty, A. M., and Knorr, D. B., J. Mech. Phys. Solids 45, 511534 (1997).CrossRefGoogle Scholar
4.Koleshko, V.M., Belitsky, V. F., and Kiryushin, I.V., Thin Solid Films 142, 199212 (1986).CrossRefGoogle Scholar
5.Thouless, M.D., Annu. Rev. Mater. Sci. 25, 6996 (1995).CrossRefGoogle Scholar
6.Volkert, C.A., Alofs, C. F., and Leifting, J. R., J. Mater. Res. 9, 1147 (1994).CrossRefGoogle Scholar
7.Proost, J., Witvrouw, A., Cosemans, P., Roussel, Ph., and Maex, K., Microel. Eng. 33, 137 (1997).CrossRefGoogle Scholar
8.Witvrouw, A., Proost, J., Deweerdt, B., Roussel, Ph., and Maex, K., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgesen, P., Townsend, P. H., Ross, C. A., and Volkert, C. A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 441.Google Scholar
9.Nix, W.D., Metall. Trans A 20A, 3317 (1989).Google Scholar
10.Hatch, J. E., Aluminum, Properties and Physical Metallurgy (ASM, Metals Park, OH, 1994), p. 135.Google Scholar
11.Gardner, D.S. and Flinn, P. A., IEEE Trans. Electron. Dev. 35 (12), 2160 (1988).CrossRefGoogle Scholar
12.Flinn, P.A., Gardner, D. S., and Nix, W., IEEE Trans. Electron. Dev. 34 (3), 689 (1987).CrossRefGoogle Scholar
13.Gardner, D.S. and Flinn, P. A., J. Appl. Phys. 67 (4), 18311844 (1990).CrossRefGoogle Scholar
14.Knorr, D.B. and Rodbell, K. P., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Børgesen, P., Townsend, P. H., Ross, C.A., and Volkert, C. A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 447.Google Scholar
15.Venkatraman, R., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Coburn, J.C., Sanchez, J. E. Jr, Rodbell, K. P., and Filter, W.F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 215.Google Scholar
16.Frost, H.J. and Ashby, M.F., in Deformation Mechanism Maps (Pergamon Press, Oxford, 1982), Chap. 2.Google Scholar
17.Kocks, U.F., Argon, A. S., and Ashby, M. F., Prog. Mater. Sci., 19 (1975).Google Scholar
18.Mechanical Behavior of Materials, edited by Clintock, F. A. and Argon, A.S. (Addison-Wesley Company, Reading, MA, 1966), pp. 276281.Google Scholar
19.Argon, A.S., Scripta Metall. 4, 1001 (1970).CrossRefGoogle Scholar
20.Aluminum Properties and Physical Metallurgy, edited by Hatch, J. E. (ASM, Metals Park, OH, 1984), p. 47.Google Scholar
21.Clarke, G.M., in Statistics and Experimental Design, 2nd ed. (Edward Arnold Ltd., London, 1980), p. 104.Google Scholar
22.Hull, D. and Bacon, D. J., Introduction to Dislocations, 3rd ed. (Pergamon Press, Oxford, New York, 1984), p. 242.Google Scholar
23.Dirks, A.G., in Materials Reliability in Microelectronics VI, edited by Filter, W.F., Clement, J. J., Oates, A.S., Rosenberg, R., and Lenahan, P.M. (Mater. Res. Soc. Symp. Proc. 428, Pittsburgh, PA, 1996), p. 201.Google Scholar