Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T13:30:33.457Z Has data issue: false hasContentIssue false

Strengthening mechanisms in high-entropy alloys: Perspectives for alloy design

Published online by Cambridge University Press:  12 October 2018

Pedro E.J. Rivera-Díaz-del-Castillo*
Affiliation:
Department of Engineering, Lancaster University, LA1 4YW Lancaster, U.K.
Hanwei Fu
Affiliation:
Department of Engineering, Lancaster University, LA1 4YW Lancaster, U.K.
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-entropy alloys (HEAs), originally introduced to the literature due to their ability to stabilize a single phase across large temperature ranges, have recently demonstrated to display multiphase systems undergoing a variety of strengthening mechanisms. Previous reports have focused on solid solution strengthening and precipitation hardening; however, other hardening mechanisms such as twinning and martensite formation have been reported to play a key role in controlling their mechanical behavior. Such deformation mechanisms display significant variations with temperature and strain rate. The present contribution provides an outline of the various hardening mechanisms reported in the literature for HEAs. For each mechanism, a modeling strategy is proposed to describe the associated mechanical behavior. The mechanisms are combined into a single framework to discover new HEAs of improved mechanical behavior. A strategy for HEA design is presented, and the advantages of adopting additive layer manufacturing to improve mechanical behavior are discussed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J-W., Chen, S., Lin, S-Ă., Gan, J-Ă., Chin, T-S., Shun, T., Tsau, C-Ă., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Brif, Y., Thomas, M., and Todd, I.: The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93 (2015).CrossRefGoogle Scholar
Ocelík, V., Janssen, N., Smith, S., and De Hosson, J.: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).CrossRefGoogle Scholar
Meier, J.: Made Smarter. Review 2017 (Department for Business, Energy & Industrial Strategy, U.K., 2017).Google Scholar
Zhang, Y., Ting Zuo, T., Tang, Z., Gao, M., Dahmen, K., Liaw, P., and Ping Lu, Z.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Olson, G.: Computational design of hierarchically structured materials. Science 277, 1237 (1997).CrossRefGoogle Scholar
Kuznetsov, A., Shaysultanov, D., Stepanov, N., Salishchev, G., and Senkov, O.: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng., A 533, 107 (2012).CrossRefGoogle Scholar
Shaysultanov, D.G., Stepanov, N.D., Kuznetsov, A.V., Salishchev, G.A., and Senkov, O.N.: Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy. JOM 65, 1815 (2013).CrossRefGoogle Scholar
Salishchev, G., Tikhonovsky, M., Shaysultanov, D., Stepanov, N., Kuznetsov, A., Kolodiy, I., Tortika, A., and Senkov, O.: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11 (2014).CrossRefGoogle Scholar
Stepanov, N., Yurchenko, N., Sokolovsky, V., Tikhonovsky, M., and Salishchev, G.: An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 161, 136 (2015).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31, 1184 (2015).CrossRefGoogle Scholar
Yurchenko, N., Stepanov, N., Zherebtsov, S., Tikhonovsky, M., and Salishchev, G.: Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng., A 704, 82 (2017).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).CrossRefGoogle Scholar
Yurchenko, N.Y., Stepanov, N.D., Tikhonovsky, M.A., and Salishchev, G.A.: Phase evolution of the AlxNbTiVZr (x = 0; 0.5; 1; 1.5) high entropy alloys. Metals 6, 298 (2016).CrossRefGoogle Scholar
Stepanov, N., Yurchenko, N., Panina, E., Tikhonovsky, M., and Zherebtsov, S.: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162 (2017).CrossRefGoogle Scholar
Stepanov, N., Shaysultanov, D., Ozerov, M., Zherebtsov, S., and Salishchev, G.: Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Mater. Lett. 185, 1 (2016).CrossRefGoogle Scholar
Stepanov, N., Shaysultanov, D., Yurchenko, N., Zherebtsov, S., Ladygin, A., Salishchev, G., and Tikhonovsky, M.: High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng., A 636, 188 (2015).CrossRefGoogle Scholar
Stepanov, N., Shaysultanov, D., Chernichenko, R., Yurchenko, N.Y., Zherebtsov, S., Tikhonovsky, M., and Salishchev, G.: Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 693, 394 (2017).CrossRefGoogle Scholar
Stepanov, N., Shaysultanov, D., Tikhonovsky, M., and Salishchev, G.: Tensile properties of the Cr–Fe–Ni–Mn non-equiatomic multicomponent alloys with different Cr contents. Mater. Des. 87, 60 (2015).CrossRefGoogle Scholar
Stepanov, N., Shaysultanov, D., Salishchev, G., Tikhonovsky, M., Oleynik, E., Tortika, A., and Senkov, O.: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 628, 170 (2015).CrossRefGoogle Scholar
Shaysultanov, D., Stepanov, N., Salishchev, G., and Tikhonovsky, M.: Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnVx (x = 0.25, 0.5, 0.75, 1). Phys. Met. Metallogr. 118, 579 (2017).CrossRefGoogle Scholar
Stepanov, N., Yurchenko, N., Zherebtsov, S., Tikhonovsky, M., and Salishchev, G.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2018).CrossRefGoogle Scholar
Grigoriev, S.N., Sobol, O.V., Beresnev, V.M., Serdyuk, I.V., Pogrebnyak, A.D., Kolesnikov, D.A., and Nemchenko, U.S.: Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J. Frict. Wear 35, 359 (2014).CrossRefGoogle Scholar
Pogrebnjak, A., Beresnev, V., Smyrnova, K., Kravchenko, Y., Zukowski, P., and Bon-darenko, G.: The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater. Lett. 211, 316 (2018).CrossRefGoogle Scholar
Tang, Z., Gao, M., Diao, H., Yang, T., Liu, J., Zuo, T., Zhang, Y., Lu, Z., Cheng, Y., Dahmen, K., Liaw, P., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65, 1848 (2013).CrossRefGoogle Scholar
Stepanov, N., Yurchenko, N.Y., Skibin, D., Tikhonovsky, M., and Salishev, G.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).CrossRefGoogle Scholar
Yurchenko, N., Stepanov, N., Shaysultanov, D., Tikhonovsky, M., and Salishchev, G.: Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 121, 125 (2016).CrossRefGoogle Scholar
Meng, F., Bauer, S.F., Liao, Y., and Baker, I.: Concentration dependence of Cr for alleviating environmental embrittlement in Fe30Ni20Mn35Al15. Intermetallics 56, 28 (2015).CrossRefGoogle Scholar
Wang, Z. and Baker, I.: Effects of annealing and thermo-mechanical treatment on the microstructures and mechanical properties of a carbon-doped FeNiMnAl multi-component alloy. Mater. Sci. Eng., A 693, 101 (2017).CrossRefGoogle Scholar
Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).CrossRefGoogle Scholar
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equiatomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).CrossRefGoogle Scholar
Laws, K.J., Crosby, C., Sridhar, A., Conway, P., Koloadin, L.S., Zhao, M., Aron-Dine, S., and Bassman, L.C.: High entropy brasses and bronzes—Microstructure, phase evolution and properties. J. Alloys Compd. 650, 949 (2015).CrossRefGoogle Scholar
Yang, X., Chen, S., Cotton, J., and Zhang, Y.: Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM 66, 2009 (2014).CrossRefGoogle Scholar
Hammond, V.H., Atwater, M.A., Darling, K.A., Nguyen, H.Q., and Kecskes, L.J.: Equal-channel angular extrusion of a low-density high-entropy alloy produced by high-energy cryogenic mechanical alloying. JOM 66, 2021 (2014).CrossRefGoogle Scholar
Wu, Z., Troparevsky, M., Gao, Y., Morris, J., Stocks, G., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).CrossRefGoogle Scholar
Zhou, Y., Zhang, Y., Wang, Y., and Chen, G.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).CrossRefGoogle Scholar
Ma, S. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).CrossRefGoogle Scholar
Guetard, G., André, J., Bellus, J., Sherif, M., and Rivera-Díaz-del Castillo, P.E.J.: In-depth comparison of powder and ingot metallurgical M50 bearing steels. In Bearing Steel Technologies: 11th Volume, Advances in Steel Technologies for Rolling Bearings STP1600, Beswick, J. M., ed. (ASTM International, West Conshohocken, Pennsylvania, 2017); p. 75.CrossRefGoogle Scholar
Hopkin, S.E., Danaie, M., Guetard, G., del Castillo, P.R-D., Bagot, P.A.J., and Moody, M.P.: Correlative atomic scale characterisation of secondary carbides in M50 bearing steel. Philos. Mag. 98, 766 (2018).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Horst, O., Eggeler, G., and George, E.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152 (2016).CrossRefGoogle Scholar
Grässel, O., Krüger, L., Frommeyer, G., and Meyer, L.: High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 16, 1391 (2000).CrossRefGoogle Scholar
Diao, H., Feng, R., Dahmen, K., and Liaw, P.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).CrossRefGoogle Scholar
Wang, J., Liu, Y., Liu, B., Wang, Y., Cao, Y., Li, T., and Zhou, R.: Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation. Mater. Sci. Eng., A 689, 233 (2017).CrossRefGoogle Scholar
Zhang, Y., Zhao, S., Weber, W.J., Nordlund, K., Granberg, F., and Djurabekova, F.: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).CrossRefGoogle Scholar
Patriarca, L., Ojha, A., Sehitoglu, H., and Chumlyakov, Y.: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 112, 5457 (2016).CrossRefGoogle Scholar
Anzorena, M.S., Bertolo, A., Gagetti, L., Kreiner, A., Mosca, H., Bozzolo, G., and del Grosso, M.: Characterization and modeling of a MoTaVWZr high entropy alloy. Mater. Des. 111, 382 (2016).CrossRefGoogle Scholar
Gao, M., Zhang, C., Gao, P., Zhang, F., Ouyang, L., Widom, M., and Hawk, J.: Thermo-dynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238 (2017).CrossRefGoogle Scholar
Yao, H., Qiao, J., Hawk, J., Zhou, H., Chen, M., and Gao, M.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, United Kingdom, 2004).Google Scholar
Huang, M., Rivera-Díaz-del-Castillo, P.E.J., Bouaziz, O., and van der Zwaag, S.: Modelling the steady state deformation stress under various deformation conditions using a single irreversible thermodynamics based formulation. Acta Mater. 57, 3431 (2009).CrossRefGoogle Scholar
Galindo-Nava, E.I. and Rivera-Díaz-del-Castillo, P.E.J.: Thermostatistical modelling of hot deformation in FCC metals. Int. J. Plast. 47, 202 (2013).CrossRefGoogle Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations (Butterworth-Heinemann, Oxford, United Kingdom, 1999).Google Scholar
Kocks, U. and Mecking, H.: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48, 171 (2003).CrossRefGoogle Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw Hill, 1988).Google Scholar
Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening: Part 1 proposed model. J. Mater. Sci. 12, 1028 (1977).CrossRefGoogle Scholar
Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening: Part 2 agreement with experimental results. J. Mater. Sci. 12, 1034 (1977).CrossRefGoogle Scholar
Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).CrossRefGoogle Scholar
Gerold, V.: Dislocation in Solids (Elsevier, Amsterdam, the Netherlands, 1979).Google Scholar
Xu, W., Rivera-Díaz-del-Castillo, P., Yan, W., Yang, K., San Martín, D., Kestens, L., and van der Zwaag, S.: A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates. Acta Mater. 58, 4067 (2010).CrossRefGoogle Scholar
Xu, W., Rivera-Díaz-del-Castillo, P.E.J., Wang, W., Yang, K., Bliznuk, V., Kestens, L., and van der Zwaag, S.: Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates. Acta Mater. 58, 3582 (2010).CrossRefGoogle Scholar
Stepanov, N., Yurchenko, N.Y., Tikhonovsky, M., and Salishchev, G.: Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J. Alloys Compd. 687, 59 (2016).CrossRefGoogle Scholar
Estrin, Y. and Mecking, H.: A unified phenomenological description of work hardening and creep based on one-parameter model. Acta Metall. 32, 57 (1984).CrossRefGoogle Scholar
Liang, X., McDermind, J., Bouaziz, O., Wang, X., Embury, J., and Zurob, H.: Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation. Acta Mater. 57, 3978 (2009).CrossRefGoogle Scholar
Bouaziz, O., Allain, S., Scott, C., Cugy, P., and Barbier, D.: High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
Olson, G. and Cohen, M.: Kinetics of strain-induced martensitic nucleation. Metall. Trans. A 6, 791 (1975).CrossRefGoogle Scholar
Li, S., Honarmandi, P., Arroyave, R., and Rivera-Díaz-del-Castillo, P.E.J.: Describing the deformation behaviour of TRIP and dual phase steels employing an irreversible thermodynamics formulation. Mater. Sci. Technol. 31, 1658 (2015).CrossRefGoogle Scholar
Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 71, 76 (2016).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372 (2000).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng., A 304, 446 (2001).CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Poletti, M.G. and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Menou, E., Toda-Caraballo, I., Rivera-Díaz-del-Castillo, P.E.J., Pineau, C., Bertrand, E., Ramstein, G., and Tancret, F.: Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics. Mater. Des. 143, 185 (2018).CrossRefGoogle Scholar
Gorsse, S., Hutchinson, C., Gouné, M., and Banerjee, R.: Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti–6Al–4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18, 584 (2017).CrossRefGoogle ScholarPubMed
Galindo-Nava, E.I. and Rivera-Díaz-del Castillo, P.E.J.: A model for the microstructure behaviour and strength evolution in lath martensite. Acta Mater. 98, 81 (2015).CrossRefGoogle Scholar
Fujieda, T., Shiratori, H., Kuwabara, K., Hirota, M., Kato, T., Yamanaka, K., Koizumi, Y., Chiba, A., and Watanabe, S.: CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater. Lett. 189, 148 (2017).CrossRefGoogle Scholar
Haase, C., Tang, F., Wilms, M., Weisheit, A., and Hallstedt, B.: Combining thermo-dynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design. Mater. Sci. Eng., A 688, 180 (2017).CrossRefGoogle Scholar
Menou, E., Tancret, F., Toda-Caraballo, I., Ramstein, G., Castany, P., Bertrand, E., Gautier, N., and Rivera-Díaz-del Castillo, P.E.J.: Computational design of light and strong high entropy alloys (HEA): Obtainment of an extremely high specific solid solution hardening. Scripta Mater. 156, 120 (2018).CrossRefGoogle Scholar
Li, Z. and Raabe, D.: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 69, 2099 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Li a, Z., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).CrossRefGoogle Scholar
Li, Z., Kormann, F., Grabowsi, B., Neugebauer, J., and Raabe, D.: Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262 (2017).CrossRefGoogle Scholar
Li, Z., Tasan, C.C., Springer, H., Gault, B., and Raabe, D.: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).CrossRefGoogle ScholarPubMed