Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T00:11:46.190Z Has data issue: false hasContentIssue false

Strategies to tailor serrated flows in metallic glasses

Published online by Cambridge University Press:  22 January 2019

Zhe Fan*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Qiang Li
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Cuncai Fan*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Haiyan Wang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Xinghang Zhang*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Serrated flow is one important characteristic of shear bands through which metallic glasses (MGs) accommodate plastic deformation. Serrated flow can be affected by intrinsic properties such as elastic modulus or extrinsic variables such as strain rate. However, the influences of pre-deformation and interfaces on serrated flow are less well understood. In this study, by using in situ micropillar compression inside a scanning electron microscope, we show that pre-deformation (consisting of cyclic loading/unloading below the nominal elastic limit) suppresses serrated flows in amorphous-CuNb but enhances serrated flows in amorphous-CuZr at both high and low strain rates. Moreover, layer interfaces in Cu/amorphous-CuNb multilayers mitigate serrated flows, and the average stress drop and strain duration associated with shear banding process can be tailored. Strain accommodation and energy dissipation via shear banding have clear impact on serrated flows. This study provides new perspectives on tailoring serrated flows and enhancing plastic deformation of MGs.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
Tian, L., Cheng, Y-Q., Shan, Z-W., Li, J., Wang, C-C., Han, X-D., Sun, J., and Ma, E.: Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).CrossRefGoogle ScholarPubMed
Greer, A. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).CrossRefGoogle Scholar
Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Greer, A.L., Cheng, Y.Q., and Ma, E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).CrossRefGoogle Scholar
Zhang, Z.F., Eckert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).CrossRefGoogle Scholar
Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
Liu, Y.H., Wang, G., Wang, R.J., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).CrossRefGoogle ScholarPubMed
Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
Johnson, W. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle ScholarPubMed
Bouchbinder, E., Langer, J.S., and Procaccia, I.: Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E 75, 036107 (2007).CrossRefGoogle ScholarPubMed
Schuh, C., Nieh, T., and Kawamura, Y.: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).CrossRefGoogle Scholar
Schuh, C.A., Lund, A.C., and Nieh, T.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T., and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng., A 375–377, 1182 (2004).CrossRefGoogle Scholar
Wang, K., Fujita, T., Zeng, Y.Q., Nishiyama, N., Inoue, A., and Chen, M.W.: Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008).CrossRefGoogle Scholar
Qiao, J.W., Zhang, Y., and Liaw, P.K.: Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18, 2057 (2010).CrossRefGoogle Scholar
Ke, H.B., Sun, B.A., Liu, C.T., and Yang, Y.: Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Mater. 63, 180 (2014).CrossRefGoogle Scholar
Ye, J.C., Lu, J., Yang, Y., and Liaw, P.K.: Study of the intrinsic ductile to brittle transition mechanism of metallic glasses. Acta Mater. 57, 6037 (2009).CrossRefGoogle Scholar
Wang, G., Chan, K.C., Xia, L., Yu, P., Shen, J., and Wang, W.H.: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 6146 (2009).CrossRefGoogle Scholar
Cheng, Y.Q., Han, Z., Li, Y., and Ma, E.: Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B 80, 134115 (2009).CrossRefGoogle Scholar
Sun, B.A., Yu, H.B., Jiao, W., Bai, H.Y., Zhao, D.Q., and Wang, W.H.: Plasticity of ductile metallic glasses: A self-organized critical state. Phys. Rev. Lett. 105, 035501 (2010).CrossRefGoogle ScholarPubMed
Sun, B.A., Pauly, S., Hu, J., Wang, W.H., Kühn, U., and Eckert, J.: Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Phys. Rev. Lett. 110, 225501 (2013).CrossRefGoogle ScholarPubMed
Maaß, R. and Löffler, J.F.: Shear‐band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).CrossRefGoogle Scholar
Han, Z., Wu, W.F., Li, Y., Wei, Y.J., and Gao, H.J.: An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009).CrossRefGoogle Scholar
Dubach, A., Dalla Torre, F.H., and Löffler, J.F.: Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater. 57, 881 (2009).CrossRefGoogle Scholar
Sun, B.A. and Wang, W.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).CrossRefGoogle Scholar
Gu, X.J., Poon, S.J., Shiflet, G.J., and Lewandowski, J.J.: Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 60, 1027 (2009).CrossRefGoogle Scholar
Zhu, Z-D., Ma, E., and Xu, J.: Elevating the fracture toughness of Cu49Hf42Al9 bulk metallic glass: Effects of cooling rate and frozen-in excess volume. Intermetallics 46, 164 (2014).CrossRefGoogle Scholar
Murali, P. and Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-T g annealing. Acta Mater. 53, 1467 (2005).CrossRefGoogle Scholar
Choi-Yim, H. and Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).CrossRefGoogle Scholar
Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).CrossRefGoogle Scholar
Szuecs, F., Kim, C., and Johnson, W.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
Chen, G., Cheng, J., and Liu, C.T.: Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics 28, 25 (2012).CrossRefGoogle Scholar
Wu, Y., Zhou, D., Song, W., Wang, H., Zhang, Z., Ma, D., Wang, X., and Lu, Z.: Ductilizing bulk metallic glass composite by tailoring stacking fault energy. Phys. Rev. Lett. 109, 245506 (2012).CrossRefGoogle ScholarPubMed
Fan, C., Ott, R., and Hufnagel, T.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
Hofmann, D.C., Suh, J-Y., Wiest, A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed
Knorr, I., Cordero, N., Lilleodden, E.T., and Volkert, C.A.: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).CrossRefGoogle Scholar
Zhang, J.Y., Liu, Y., Chen, J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng., A 552, 392 (2012).CrossRefGoogle Scholar
Huang, H., Pei, H., Chang, Y., Lee, C., and Huang, J.: Tensile behaviors of amorphous-ZrCu/nanocrystalline-Cu multilayered thin film on polyimide substrate. Thin Solid Films 529, 177 (2013).CrossRefGoogle Scholar
Chu, J.P., Jang, J., Huang, J., Chou, H., Yang, Y., Ye, J., Wang, Y., Lee, J., Liu, F., and Liaw, P.: Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 520, 5097 (2012).CrossRefGoogle Scholar
Nieh, T. and Wadsworth, J.: Bypassing shear band nucleation and ductilization of an amorphous–crystalline nanolaminate in tension. Intermetallics 16, 1156 (2008).CrossRefGoogle Scholar
Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).CrossRefGoogle ScholarPubMed
Liu, M., Du, X., Lin, I., Pei, H., and Huang, J.: Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars. Intermetallics 30, 30 (2012).CrossRefGoogle Scholar
Zhang, J., Liu, G., Lei, S., Niu, J., and Sun, J.: Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic versus extrinsic size effect. Acta Mater. 60, 7183 (2012).CrossRefGoogle Scholar
Fan, Z., Li, J., Yang, Y., Wang, J., Li, Q., Xue, S., Wang, H., Lou, J., and Zhang, X.: “Ductile” fracture of metallic glass nanolaminates. Adv. Mater. Interfaces 4, 1700510 (2017).CrossRefGoogle Scholar
Wang, Y.M., Hamza, A.V., and Barbee, T.W.: Incipient plasticity in metallic glass modulated nanolaminates. Appl. Phys. Lett. 91, 061924 (2007).CrossRefGoogle Scholar
Guo, W., Jägle, E.A., Choi, P-P., Yao, J., Kostka, A., Schneider, J.M., and Raabe, D.: Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 113, 035501 (2014).CrossRefGoogle ScholarPubMed
Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).CrossRefGoogle Scholar
Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
Fan, Z., Liu, Y., Xue, S., Rahimi, R.M., Bahr, D.F., Wang, H., and Zhang, X.: Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appl. Phys. Lett. 110, 161905 (2017).CrossRefGoogle Scholar
Packard, C.E., Homer, E.R., Al-Aqeeli, N., and Schuh, C.A.: Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations. Philos. Mag. 90, 1373 (2010).CrossRefGoogle Scholar
Packard, C.E., Witmer, L.M., and Schuh, C.A.: Hardening of a metallic glass during cyclic loading in the elastic range. Appl. Phys. Lett. 92, 171911 (2008).CrossRefGoogle Scholar
Ye, J.C., Lu, J., Liu, C.T., Wang, Q., and Yang, Y.: Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619 (2010).CrossRefGoogle ScholarPubMed
Tong, Y., Iwashita, T., Dmowski, W., Bei, H., Yokoyama, Y., and Egami, T.: Structural rejuvenation in bulk metallic glasses. Acta Mater. 86, 240 (2015).CrossRefGoogle Scholar
Fan, Z., Li, Q., Li, J., Xue, S., Wang, H., and Zhang, X.: Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates. J. Mater. Res. 32, 2680 (2017).CrossRefGoogle Scholar
Lewandowski, J., Wang, W., and Greer, A.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
Ye, J., Lu, J., Yang, Y., and Liaw, P.: Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics 18, 385 (2010).CrossRefGoogle Scholar
Liu, Y., Jian, J., Lee, J., Wang, C., Cao, Q., Gutierrez, C., Wang, H., Jiang, J., and Zhang, X.: Repetitive ultra-low stress induced nanocrystallization in amorphous Cu–Zr–Al alloy evidenced by in situ nanoindentation. Mater. Res. Lett. 2, 209 (2014).CrossRefGoogle Scholar
Volkert, C., Donohue, A., and Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 83539 (2008).CrossRefGoogle Scholar
Jang, D. and Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215 (2010).CrossRefGoogle ScholarPubMed
Jang, D., Gross, C.T., and Greer, J.R.: Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int. J. Plast. 27, 858 (2011).CrossRefGoogle Scholar
Bharathula, A., Lee, S-W., Wright, W.J., and Flores, K.M.: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789 (2010).CrossRefGoogle Scholar
Shan, Z.W., Li, J., Cheng, Y.Q., Minor, A.M., Syed Asif, S.A., Warren, O.L., and Ma, E.: Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars. Phys. Rev. B 77, 155419 (2008).CrossRefGoogle Scholar
Tönnies, D., Maaß, R., and Volkert, C.A.: Room temperature homogeneous ductility of micrometer‐sized metallic glass. Adv. Mater. 26, 5715 (2014).CrossRefGoogle ScholarPubMed
Thurnheer, P., Maaß, R., Laws, K.J., Pogatscher, S., and Löffler, J.F.: Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Mater. 96, 428 (2015).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
Sun, B.A., Pauly, S., Tan, J., Stoica, M., Wang, W.H., Kühn, U., and Eckert, J.: Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 60, 4160 (2012).CrossRefGoogle Scholar
Ma, W., Kou, H., Li, J., Chang, H., and Zhou, L.: Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature. J. Alloys Compd. 472, 214 (2009).CrossRefGoogle Scholar
Klaumünzer, D., Lazarev, A., Maaß, R., Dalla Torre, F.H., Vinogradov, A., and Löffler, J.F.: Probing shear-band initiation in metallic glasses. Phys. Rev. Lett. 107, 185502 (2011).CrossRefGoogle ScholarPubMed
Yang, Y. and Liu, C.T.: Size effect on stability of shear-band propagation in bulk metallic glasses: An overview. J. Mater. Sci. 47, 55 (2012).CrossRefGoogle Scholar
Liu, C. and Maaß, R.: Elastic fluctuations and structural heterogeneities in metallic glasses. Adv. Funct. Mater., 28, 1800388 (2018).CrossRefGoogle Scholar
Sha, Z., Qu, S., Liu, Z., Wang, T., and Gao, H.: Cyclic deformation in metallic glasses. Nano Lett. 15, 7010 (2015).CrossRefGoogle ScholarPubMed
Jiang, M. and Dai, L.: On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids 57, 1267 (2009).CrossRefGoogle Scholar
Zhang, Y., Wang, W., and Greer, A.: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).CrossRefGoogle ScholarPubMed
Yang, Y., Ye, J.C., Lu, J., and Liu, C.T.: Dual character of stable shear banding in bulk metallic glasses. Intermetallics 19, 1005 (2011).CrossRefGoogle Scholar
Radchenko, I., Tippabhotla, S., Tamura, N., and Budiman, A.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
Radchenko, I., Anwarali, H., Tippabhotla, S., and Budiman, A.: Effects of interface shear strength during failure of semicoherent metal–metal nanolaminates: An example of accumulative roll-bonded Cu/Nb. Acta Mater. 156, 125 (2018).CrossRefGoogle Scholar
Supplementary material: File

Fan et al. supplementary material

Fan et al. supplementary material 1

Download Fan et al. supplementary material(File)
File 101.4 MB