Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:31:13.164Z Has data issue: false hasContentIssue false

Strain sensing using carbon fiber

Published online by Cambridge University Press:  31 January 2011

Xiaojun Wang
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260-4400
Xuli Fu
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260-4400
D. D. L. Chung
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260-4400
Get access

Abstract

Carbon fiber provides strain sensing through change in electrical resistance upon strain. Due to piezoresistivity of various origins, a single carbon fiber in epoxy, an epoxy-matrix composite with short carbon fibers (5.5 vol%), a cement-matrix composite with short carbon fibers (0.2–0.5 vol%), and an epoxy-matrix composite with continuous carbon fibers (58 vol%) are strain sensors with fractional change in resistance per unit strain up to 625. A single bare carbon fiber is not piezoresistive, but just resistive.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conor, P. C. and Owston, C. N., Nature (London) 223, 1146 (1969).Google Scholar
2.Owston, C. N., J. Phys. D 3, 1615 (1970).CrossRefGoogle Scholar
3.Berg, C. A., Cumpston, H., and Rinsky, A., Textile Res. J. 42 (8), 486 (1972).Google Scholar
4.DeTeresa, S.J., Carbon 29 (3), 397 (1991).CrossRefGoogle Scholar
5.Crasto, A. S. and Kim, R. Y., Proc. Am. Soc. Composites, 8th Tech. Conf. (Technomic Pub Co., Lancaster, PA, 1994), pp. 162173.Google Scholar
6.Muto, N., Yanagida, H., Miyayama, M., Nakatsuji, T., Sugita, M., and Ohtsuka, Y., J. Ceram. Soc. Jpn. (Int. Ed.) 100, 582 (1992).Google Scholar
7.Kost, J., Narkis, M., and Foux, A., J. Appl. Polym. Sci. 29, 3937 (1984).CrossRefGoogle Scholar
8.Radhakrishnan, S., Chakne, S., and Shelke, P. N., Mater. Lett. 18, 358 (1994).Google Scholar
9.Pramanik, P. K., Khastgir, D., De, S. K., and Saha, T. N., J. Mater. Sci. 25, 3848 (1990).Google Scholar
10.Wang, X. and Chung, D. D. L., Smart Mater. Struct. 4, 363 (1995).Google Scholar
11.Chen, P. and Chung, D. D. L., Composites Part B 27B, 11 (1996).Google Scholar
12.Chen, P. and Chung, D. D. L., Smart Mater. Struct. 2, 22 (1993).CrossRefGoogle Scholar
13.Chen, P. and Chung, D. D. L., J. Am. Ceram. Soc. 78 (3), 816 (1995).CrossRefGoogle Scholar
14.Chen, P. and Chung, D. D. L., ACI Mater. J. 93 (4), 341 (1996).Google Scholar
15.Chen, P. and Chung, D. D. L., J. Electron. Mater. 24 (1), 47 (1995).CrossRefGoogle Scholar
16.Chen, P., Fu, X., and Chung, D. D. L., ACI Mater. J. 94 (2), 147 (1997).Google Scholar
17.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 26 (1), 15 (1996).Google Scholar
18.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 27 (9), 1313 (1997).CrossRefGoogle Scholar
19.Chen, P. and Chung, D. D. L., ACI Mater. J. 93 (2), 129 (1996).Google Scholar
20.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 25 (7), 1391 (1995).CrossRefGoogle Scholar
21.Fu, X., Lu, W., and Chung, D. D. L., Cem. Concr. Res. 28 (2), 183 (1998).Google Scholar
22.Wang, X. and Chung, D. D. L., Smart Mater. Struct. 5, 796 (1996).CrossRefGoogle Scholar
23.Schulte, K. and Baron, Ch., Composites Sci. Technol. 36, 63 (1989).CrossRefGoogle Scholar