Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:35:32.619Z Has data issue: false hasContentIssue false

Strain rate sensitivity in nanoindentation creep of hard materials

Published online by Cambridge University Press:  31 January 2011

A.A. Elmustafa*
Affiliation:
Department of Mechanical Engineering and The Applied Research Center–Jefferson Laboratory, Old Dominion University, Norfolk, Virginia 23529
D.S. Stone
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper examines the strain rate sensitivity of the hardness νH in relation to the strain rate sensitivity of the flow stress (νσ) in hard solids when there is friction between the indenter and specimen. Finite element analysis is used to simulate indentation creep of von Mises solids with a range of hardness/modulus ratios (H/E*) and coefficients of friction, μ, for indenter–specimen contact. We find that, although the level of H is affected by friction, the ratio νHσ as a function of H/E* remains nearly unchanged. Measurements indicate that νH = 0.015 ± 0.02 for fused silica, from which, based on the present analysis, νσ ≈ 0.022 and from which an activation volume of 0.13 nm3 can be estimated for plastic deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Elmustafa, A.A., Kose, S.Stone, D.S.: The strain rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22(4), 926 2007CrossRefGoogle Scholar
2Atkins, A.G., Silverio, A.Tabor, D.: Indentation hardness and creep of solids. J. Inst. Metals 94(11), 369 1966Google Scholar
3Bower, A.F., Fleck, N.A., Needleman, A.Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. London Ser. A (Math. Phys. Sci.) 441, 1911 97 1993Google Scholar
4Cheng, Y-T.Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. Rep. R44(4–5), 91 2004CrossRefGoogle Scholar
5Hill, R.: Similarity analysis of creep indentation tests. Proc. R. Soc. London Ser. A (Math. Phys. Sci.) 436 (1898), 617 1992Google Scholar
6Lucas, B.N.Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans., A 30(3), 601 1999CrossRefGoogle Scholar
7Poisl, W.H., Oliver, W.C.Fabes, B.D.: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10(8), 2024 1995CrossRefGoogle Scholar
8Sargent, P.M.Ashby, M.F.: Indentation creep. Mater. Sci. Technol. 8(7), 594 1992Google Scholar
9Asaro, R.J.Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 3369 2005CrossRefGoogle Scholar
10Goldsby, D.L., Rar, A., Pharr, G.M.Tullis, T.E.: Nanoindentation creep of quartz, with implications for rate- and state-variable friction laws relevant to earthquake mechanics. J. Mater. Res. 19(1), 357 2004CrossRefGoogle Scholar
11Jang, D.Atzmon, M.: Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93(11), 9282 2003CrossRefGoogle Scholar
12Li, H.Ngan, A.H.W.: Indentation size effects on the strain rate sensitivity of nanocrystalline Ni-25at.%Al thin films. Scripta Mater. 52(9), 827 2005CrossRefGoogle Scholar
13Shou-Yi, C., Yu-Shuien, L.Ting-Kui, C.: Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater. Sci. Eng., A 423(1–2), 52 2006Google Scholar
14Wen, S.P., Zeng, F., Gao, Y.Pan, F.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Mater. 55(2), 187 2006CrossRefGoogle Scholar
15Yoder, K.B., Elmustafa, A.A., Lin, J.C., Hoffman, R.A.Stone, D.S.: Activation analysis of deformation in evaporated molybdenum thin films. J. Phys. D: Appl. Phys. 36(7), 884 2003CrossRefGoogle Scholar
16Conrad, H.: Cryogenic properties of metals in High-Strength Materials Wiley Berkeley, CA 1964 436–509Google Scholar
17Cottrell, A.H.: Thermally activated plastic glide. Philos. Mag. Lett. 82(2), 65 2002CrossRefGoogle Scholar
18Kocks, U.F., Argon, A.S.Ashby, M.F.: Thermodynamics and kinetics of slip in Progress in Materials Science Pergamon Press Oxford 1975 18, xviiiGoogle Scholar
19Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27(1), 47 1979CrossRefGoogle Scholar
20Hannula, S-P., Stone, D.Li, C-Y.: Determination of time-dependent plastic properties by indentation load relaxation techniques in Electronic Packaging Materials Science,edited by E.A. Giess, K-N. Tu, and D.R. Uhlmann (Mater. Res. Soc. Symp. Proc. 40 Pittsburgh, PA,1985 218CrossRefGoogle Scholar
21Stone, D.S.Yoder, K.B.: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9(10), 2524 1994CrossRefGoogle Scholar
22Elmustafa, A.A.Stone, D.S.: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51(2), 357 2003CrossRefGoogle Scholar
23Tambwe, M.F., Stone, D.S., Griffin, A.J., Kung, H., Lu, Y.C.Nastasi, M.: Haasen plot analysis of the Hall–Petch effect in Cu-Nb nanolayer composites. J. Mater. Res. 14(2), 407 1999CrossRefGoogle Scholar
24Chu, S.N.G.Li, J.C.M.: Impression creep; A new creep test. J. Mater. Sci. 12(11), 2200 1977CrossRefGoogle Scholar
25Chu, S.N.G.Li, J.C.M.: Impression creep of beta-tin single crystals. Mater. Sci. Eng. 39(1), 1 1979CrossRefGoogle Scholar
26Johnson, K.L.: Contact Mechanics Cambridge University Press Cambridge, UK 1985 452CrossRefGoogle Scholar
27Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1(3), 145 1970CrossRefGoogle Scholar
28Meade, C.Jeanloz, R.: Frequency-dependent equation of state of fused silica to 10 GPa. Phys. Rev. B: Condens. Matter 35(1), 236 1987CrossRefGoogle ScholarPubMed
29Malzbender, J., De With, G.Toonder, J. Den: The Ph 2 relationship in indentation. J. Mater. Res. 15(5), 1209 2000CrossRefGoogle Scholar