Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T11:17:18.224Z Has data issue: false hasContentIssue false

Strain landscapes and self-organization of free surfaces in complex oxide epitaxy

Published online by Cambridge University Press:  22 August 2017

Felip Sandiumenge*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Avinguda dels Til∣lers s/n, Campus de la UAB, Bellaterra 08193, Catalonia, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The growth behavior of epitaxial transition metal oxides with the perovskite structure often shows discrepancies with models established for semiconductor and metal films. The reason is rooted in the versatility of such octahedral framework structures to accommodate the interfacial dissimilarity and the participation of strongly coupled electron and lattice degrees of freedom in strain relaxation mechanisms. Here, we revisit the behavior of the prototypic La0.7Sr0.3MnO3 manganite under specific growth conditions, enabling the isolation of pure octahedral tilting and misfit dislocation mechanisms in the same material. Analysis of the observed behavior provides insights into the competition between octahedral tilting and classical relaxation mechanisms by misfit dislocations or domain formation, and the effect of additional contributions to dissimilarity such as symmetry mismatch and polar discontinuities. Moreover, given the intimate association between misfit relaxation and self-organization mechanisms, opportunities and limitations of the observed behavior in the generation of novel bottom-up functional nanostructures is also addressed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Artur Braun

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Frank, F.C. and van der Merwe, J.H.: One-dimensional dislocations. I. Static theory. Proc. R. Soc. London, Ser. A 198, 205216 (1949).Google Scholar
Frank, F.C. and van der Merwe, J.H.: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216225 (1949).Google Scholar
Matthews, J.W.: The observation of dislocations to accommodate the misfit between crystals with different lattice parameters. Philos. Mag. 6, 13471349 (1961).Google Scholar
Delavignette, P., Tournier, J., and Amelinckx, S.: Direct observation of dislocations due to epitaxy. Philos. Mag. 6, 14191420 (1961).Google Scholar
Hirsch, P.B., Horne, R.W., and Wheelan, M.J.: Direct observation of the arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677684 (1956).Google Scholar
Matthews, J.W.: Defects associated with the accommodation of misfit between crystals. J. Vac. Sci. Technol. 12, 126133 (1975).Google Scholar
van der Merwe, J.H.: Strain relaxation in epitaxial overlayers. J. Electron. Mater. 20, 793803 (1991).Google Scholar
Jain, S.C., Harker, A.H., and Cowley, R.A.: Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 75, 14611515 (1997).Google Scholar
Dove, M.T., Gambhir, M., Hammonds, K.T., Heine, V., and Pryde, A.K.A.: Distortions of framework structures. Phase Transitions 58, 121143 (1996).Google Scholar
Carpenter, M.A., Sondergeld, P., Li, B., Liebermann, R.C., Walsh, J.W., Schreuer, J., and Darling, T.W.: Structural evolution, strain and elasticity of perovskites at high pressures and temperatures. J. Mineral. Petrol. Sci. 101, 95109 (2006).Google Scholar
Pennycook, S.J., Zhou, H., Chisholm, M.F., Borisevich, A.Y., Varela, M., Gazquez, J., Pennycook, T.J., and Narayan, J.: Misfit accommodation in oxide film heterostructures. Acta Mater. 61, 27252733 (2013).Google Scholar
Sandiumenge, F., Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Pomar, A., Espinós, J.P., and Martínez, B.: Competing misfit relaxation mechanisms in epitaxial correlated oxides. Phys. Rev. Lett. 110, 107206 (2013).Google Scholar
Vailionis, A., Boschker, H., Siemons, W., Houwman, E.P., Blank, D.H.A., Rijnders, G., and Koster, G.: Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011).Google Scholar
Zhang, Y.Y., Mishra, R., Pennycook, T.J., Borisevich, A.Y., Pennycook, S.J., and Pantelides, S.: Oxygen disorder, a way to accommodate large epitaxial strains in oxides. Adv. Mater. Interfaces 2, 1500344 (2015).Google Scholar
Gao, H-J., Chen, C.L., Rafferty, B., Pennycook, S.J., Luo, G.P., and Chu, C.W.: Atomic structure of Ba0.5Sr0.5TiO3 thin films on LaAlO3 . Appl. Phys. Lett. 75, 25422544 (1999).Google Scholar
Suzuki, T., Nishi, Y., and Fujimoto, M.: Analysis of misfit relaxation in heteroepitaxial BaTiO3 thin films. Philos. Mag. A 79, 24612483 (1999).Google Scholar
Wang, Y., Kim, S.G., and Chen, I-W.: Control of strain relaxation in tensile and compressive oxide thin films. Acta Mater. 56, 53125321 (2008).Google Scholar
Tokura, Y.: Correlated-electron physics in transition-metal oxides. Phys. Today 56, 5055 (2003).Google Scholar
Tebano, A., Aruta, C., Sanna, S., Medaglia, P.G., Balestrino, G., Sidorenko, A.A., De Renzi, R., Ghiringhelli, G., Braicovich, L., Bisogni, V., and Brookes, N.B.: Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008).Google Scholar
Pesquera, D., Herranz, G., Barla, A., Pellegrin, E., Bondino, F., Magnano, E., Sánchez, F., and Fontcuberta, J.: Surface symmetry-breaking and strain effects on orbital-occupancy in transition metal perovskite films. Nat. Commun. 3, 1189 (2012).Google Scholar
Fang, Z., Solovyev, I., and Terakura, K.: Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 31693172 (2000).Google Scholar
Mukherjee, A., Cole, W.S., Woodward, P., Randeria, M., and Trivedi, N.: Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films. Phys. Rev. Lett. 110, 157201 (2013).Google Scholar
Müller, K.A., Berlinger, W., and Waldner, F.: Characteristic structural phase transition in perovskite-type compounds. Phys. Rev. Lett. 21, 814817 (1968).Google Scholar
He, F., Wells, B.O., and Saphiro, M.: Strain phase diagram and domain orientation in SrTiO3 thin films. Phys. Rev. Lett. 94, 176101 (2005).Google Scholar
May, S.J., Kim, J-W., Rondinelli, J.M., Karapetrova, E., Spalding, N.A., Bhattacharya, A., and Ryan, P.J.: Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 0141110 (2010).Google Scholar
Weber, M.C., Guennou, M., Dix, N., Pesquera, D., Sánchez, F., Herranz, G., Fontcuberta, J., López-Conesa, L., Estradé, S., Peiró, F., Iñiguez, J., and Kreisel, J.: Multiple strain-induced transitions in LiNiO3 thin films. Phys. Rev. B 94, 014118 (2016).Google Scholar
Hwang, J., Son, J., Zhang, J.Y., Janotti, A., Van de Walle, C.G., and Stemmer, S.: Structural origins of the propierties of rare earth nickelate superlattices. Phys. Rev. B 87, 060101(R) (2013).CrossRefGoogle Scholar
Rotella, H., Lüders, U., Janolin, P-E., Dao, V.H., Chategnier, D., Feyerherm, R., Dudzik, E., and Prellier, W.: Octahedral tilting in LaVO3 thin films. Phys. Rev. B 85, 184101 (2012).Google Scholar
Zayak, A.T., Huang, X., Neaton, J.B., and Rabe, K.M.: Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys. Rev. B 74, 094104 (2006).Google Scholar
Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv. Funct. Mater. 24, 51775184 (2014).CrossRefGoogle Scholar
Sando, D., Xu, B., Bellaiche, L., and Nagarajan, V.: A multiferroic on the brink: Uncovering nuances of strain-induced transitions in BiFeO3 . Appl. Phys. Rev. 3, 011106 (2016).Google Scholar
Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 33843392 (1972).CrossRefGoogle Scholar
Glazer, A.M.: A brief history of tilts. Phase Transitions 84, 405420 (2011).Google Scholar
Howard, C.J. and Stokes, H.T.: Group-Theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 54, 782789 (1998).CrossRefGoogle Scholar
Alderson, A. and Evans, K.E.: Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 225503 (2002).CrossRefGoogle ScholarPubMed
Valant, M., Axelsson, A-K., Aguesse, F., and Alford, N.M.: Molecular auxetic behavior of epitaxial Co-ferrite spinel thin film. Adv. Funct. Mater. 20, 644647 (2010).Google Scholar
MacManus-Driscoll, J., Suwardi, A., Kursumovic, A., Bi, Z., Tsai, C-F., Wang, H., Jia, Q., and Lee, O.J.: New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach. APL Mater. 3, 062507 (2015).Google Scholar
Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423426 (2004).Google Scholar
Gozar, A., Logvenov, G., Fitting Kourkoutis, L., Bollinger, A.T., Giannuzzi, L.A., Muller, D.A., and Bozovic, I.: High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782785 (2008).CrossRefGoogle ScholarPubMed
Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J-M., and Mannhart, J.: Superconducting interfaces between insulating oxides. Science 317, 11961199 (2007).Google Scholar
Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., and Barthélémy, A.: Ferroelectric control of spin polarization. Science 327, 11061110 (2010).Google Scholar
Wang, X.R., Li, C.J., , W.M., Paudel, T.R., Leusink, D.P., Koek, M., Poccia, N., Vailionis, A., Venkatesan, T., Coey, J.M.D., Tsymbal, Ariando, E.Y., and Hilgenkamp, H.: Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heteroestructures. Science 349, 716719 (2015).Google Scholar
Rondinelli, J.M. and Spaldin, N.A.: Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 33633381 (2011).Google Scholar
Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261270 (2012).Google Scholar
Kan, D., Aso, R., Sato, R., Haruta, M., Kurata, H., and Shimakawa, Y.: Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 15, 432438 (2016).Google Scholar
Qiao, L., Jang, J.H., Singh, D.J., Gai, Z., Xiao, H., Mehta, A., Vasudevan, R.K., Tselev, A., Feng, Z., Zhou, H., Li, S., Prellier, W., Zu, X., Liu, Z., Borisevich, A., Baddorf, A.P., and Biegalski, M.D.: Dimensionality controlled octahedral symmetry-mismatch and functionalities in epitaxial LaCoO3/SrTiO3 heterostructures. Nano Lett. 15, 46774684 (2015).Google Scholar
Moon, E.J., Balachandran, P.V., Kirby, B.J., Keavney, D.J., Sichel-Tissot, R.J., Schlepütz, C.M., Karapetrova, E., Xeng, X.M., Rondinelli, J.M., and May, S.J.: Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett. 14, 25092514 (2014).Google Scholar
Gao, R., Dong, Y., Xu, H., Zhou, H., Yuan, Y., Gopalan, V., Gao, C., Fong, D.D., Chen, Z., Luo, Z., and Martin, L.W.: Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3 . ACS Appl. Mater. Interfaces 8, 1487114878 (2016).Google Scholar
Jia, C.L., Mi, S.B., Faley, M., Poppe, U., Schubert, J., and Urban, K.: Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).Google Scholar
Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., and Pennycook, S.J.: Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).Google Scholar
Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).Google Scholar
Fister, T.T., Zhou, H., Luo, Z., Seo, S.S.A., Hruszkewycz, S.O., Proffit, D.L., Eastman, J.A., Fuoss, P.H., Baldo, P.M., Lee, H.N., and Fong, D.D.: Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures. APL Mater. 2, 021102 (2014).Google Scholar
He, Q., Ishikawa, R., Lupini, A.R., Qiao, L., Moon, E.J., Ovchinnikov, O., May, S.J., Biegalski, M.D., and Borisevich, A.: Octahedron rotations at perovskite heterointerfaces, unit cell by unit cell. ACS Nano 9, 84128419 (2015).Google Scholar
Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Octahedral tilt propagation controlled by A-site cation size at perovskite oxide heterointerfaces. Cryst. Growth Des. 14, 21282132 (2014).Google Scholar
Darling, T.W., Migliori, A., Moshopoulou, E.G., Trugman, S.A., Neumeier, J.J., Sarrao, J.L., Bishop, A.R., and Thompson, J.D.: Measurement of the elastic tensor of a single crystal of La0.87Sr0.13MnO3 and its response to magnetic fields. Phys. Rev. B 57, 50935097 (1998).Google Scholar
Goodwin, A.L.: Rigid unit modes and intrinsic flexibility in linearly bridged framework structures. Phys. Rev. B 74, 13402 (2006).Google Scholar
Woodward, P.M.: Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr., Sect. B: Struct. Sci. 53, 4466 (1997).Google Scholar
Roytburd, L.: Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329339 (1976).Google Scholar
Farag, N., Bobeth, M., Pompe, W., Romanov, A.E., and Speck, J.S.: Modeling of twinning in (001)-oriented La0.67Sr0.33MnO3 thin films. J. Appl. Phys. 97, 113516 (2005).Google Scholar
Sapriel, J.: Domain-wall orientations in ferroelastics. Phys. Rev. 12, 51285140 (1975).Google Scholar
Haas, C.W. and Jaep, W.F.: Domain wall model for ferroelastics. Phys. Lett. A 49, 7778 (1974).CrossRefGoogle Scholar
Beanland, R.: Structure of planar defects in tilted perovskites. Acta Crystallogr., Sect. A: Found. Crystallogr. 67, 191199 (2011).Google Scholar
Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectrics. Rev. Mod. Phys. 84, 119155 (2012).Google Scholar
Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nat. Mater. 5, 312320 (2006).Google Scholar
Marrocchelli, D., Sun, L., and Yildiz, B.: Dislocations in SrTiO3: Easy to reduce but not so fast for oxygen transport. J. Am. Chem. Soc. 137, 47354748 (2015).CrossRefGoogle Scholar
Chang, C-P., Chu, M-W., Jeng, H.T., Cheng, S-L., Lin, J.G., Yang, J-R., and Chen, C.H.: Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field. Nat. Commun. 5, 3522 (2014).CrossRefGoogle ScholarPubMed
Pandya, S., Damodaran, A.R., Xu, R., Hsu, S-L., Agar, J.C., and Martin, L.W.: Strain-induced growth instability and nanoscale surface patterning in perovskite thin films. Sci. Rep. 6, 26075 (2016).Google Scholar
Sandiumenge, F., Bagués, N., Santiso, J., Paradinas, M., Pomar, A., Konstantinovic, Z., Ocal, C., Balcells, L., Casanove, M-J., and Martínez, B.: Misfit dislocation guided topographic and conduction patterning in complex oxide epitaxial thin films. Adv. Mater. Interfaces 3, 1600106 (2016).CrossRefGoogle Scholar
Santiso, J., Roqueta, J., Bagués, N., Frontera, C., Konstantinovic, Z., Lu, Q., Yildiz, B., Martínez, B., Pomar, A., Balcells, L., and Sandiumenge, F.: Self-arranged misfit dislocation network formation upon strain release in La0.7Sr0.3MnO3/LaAlO3(100) epitaxial films under compressive strain. ACS Appl. Mater. Interfaces 8, 1682316832 (2016).CrossRefGoogle Scholar
Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Ferrer, P., Pomar, A., Martínez, B., and Sandiumenge, F.: Thickness evolution of the twin structure and shear strain in LSMO films. CrystEngComm 15, 39083918 (2013).Google Scholar
Urushibara, Y., Morimoto, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1−x Sr x MnO3 . Phys. Rev. B 51, 14103 (1995).Google Scholar
Martin, M.C., Shirane, G., Endoh, Y., Hirota, K., Moritomo, Y., and Tokura, Y.: Magnetism and structural distortion in the La0.7Sr0.3MnO3 metallic ferromagnet. Phys. Rev. B 53, 1428514290 (1996).Google Scholar
Tselev, A., Vasudevan, R.K., Gianfrancesco, A.G., Qiao, L., Meyer, T.L., Lee, H.N., Biegalski, M.D., Baddorf, A.P., and Kalinin, S.V.: Growth mode transition in complex oxide heteroepitaxy: Atomically resolved studies. Cryst. Growth Des. 16, 27082716 (2016).Google Scholar
Breckenfeld, E., Shah, A.B., and Martin, L.W.: Strain evolution in non-stoichiometric heteroepitaxial thin-film perovskites. J. Mater. Chem. C 1, 80528059 (2013).Google Scholar
Martin, L.W., Chu, Y-H., and Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng., R 68, 89133 (2010).Google Scholar
Moyer, J.A., Mangalam, R.V.K., Martin, L.W.: Epitaxial growth of magnetic-oxide thin films. In Epitaxial Growth of Complex Metal Oxides, Koster, G., Huijben, M., and Rijnders, G., eds. (Elsevier, Amsterdam, 2015), pp. 129172.Google Scholar
Boschker, H., Verbeeck, J., Egoavil, R., Bals, S., van Tendeloo, G., Huijben, M., Houwman, E.P., Koster, G., Blank, D.A., and Rijnders, G.: Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces. Adv. Funct. Mater. 22, 22352240 (2012).Google Scholar
Dagotto, E.: Playing with the geometry of oxide heterostructures. Physics 2, 12 (2009).Google Scholar
Harrison, W.A., Kraut, E.A., Waldrop, J.R., and Grant, R.W.: Polar heterojunction interfaces. Phys. Rev. B 18, 44024410 (1978).Google Scholar
Nakawaga, N., Hwang, H.Y., and Muller, D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5, 204209 (2006).Google Scholar
Sankara Rama Krishnan, P.S., Morozovska, A.N., Eliseev, E.A., Ramasse, Q.M., Kepaptsoglou, D., Liang, W-I., Chu, Y-H., Munroe, P., and Nagarajan, V.: Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. J. Appl. Phys. 115, 054103 (2014).Google Scholar
Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Garfunkel, E., Shah, A.B., Zuo, J-M., and Ramasse, Q.M.: Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65, 317352 (2010).Google Scholar
Bagués, N.: Atomic and electronic structure of self-organized defects in epitaxial films of functional perovskite-type oxides. Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2017.Google Scholar
Pond, R.C. and Vlachavas, D.S.: Bicrystallography. Proc. R. Soc. London, Ser. A 386, 95143 (1983).Google Scholar
He, J., Borisevich, A., Kalinin, S.V., Pennycook, S.J., and Pantelides, S.T.: Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).Google Scholar
Hwang, J., Zhang, J.Y., and Stemmer, S.: Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100, 191909 (2012).Google Scholar
Brahlek, M., Choquette, A.K., Smith, C.R., Engel-Herbert, R., and May, S.: Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J. Appl. Phys. 121, 045303 (2017).CrossRefGoogle Scholar
Romanov, A.E., Vojta, A., Pompe, W., Lefevre, M.J., and Speck, J.S.: Domain patterns in (111) oriented tetragonal ferroelectric films. Phys. Status Solidi A 172, 225253 (1999).Google Scholar
Konstantinovic, Z., Santiso, J., Colson, D., Forget, A., Balcells, L., and Martínez, B.: Self-organization processes in highly epitaxial La2/3Sr1/3MnO3 thin films grown on SrTiO3 (001) substrates. J. Appl. Phys. 105, 063919 (2009).Google Scholar
Maurice, J-L., Pailloux, F., Barthélémy, A., Durand, O., Imhoff, D., Lyonnet, R., Rocher, A., and Contour, A.: Strain relaxation in the epitaxy of La2/3Sr1/3MnO3 grown by pulsed-laser deposition on SrTiO3(001). Philos. Mag. 83, 32013224 (2003).Google Scholar
Jiang, J., Henry, L.L., Gnanasekar, K.I., Chen, C., and Meletis, E.I.: Self-assembly of highly epitaxial (La,Sr)MnO3 nanorods on (001) LaAlO3 . Nano Lett. 4, 741745 (2004).CrossRefGoogle Scholar
Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Ju, H.L., and Krishnan, K.M.: High-resolution electron microscopy study of strained epitaxial La0.7Sr0.3MnO3 thin films. Philos. Mag. 80, 673691 (2000).Google Scholar
Herpers, A., O’Shea, K.J., MacLaren, D.A., Noyong, M., Rösgen, B., Simon, U., and Dittmann, R.: Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3 . APL Mater. 2, 106106 (2014).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and calcogenides. Acta Cryst. A 32, 751767 (1976).Google Scholar
Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D.: Structural phase diagram of La1−x Sr x MnO x−δ: Relationship to magnetic and transport properties. Phys. Rev. B 54, 61726183 (1996).Google Scholar
Liao, Z., Gauquelin, N., Green, R.J., Macke, S., Gonnissen, J., Thomas, S., Zhong, Z., Li, L., Si, L., Van Aert, S., Hansmann, P., Held, K., Xia, J., Verbeeck, J., Van Tendeloo, G., Sawatzky, G.A., Koster, G., Huijben, M., and Rijnders, G.: Thickness dependent properties in oxide heterostructures driven by structurally induced metal–oxygen hybridization variations. Adv. Funct. Mater. 27, 1606717 (2017).Google Scholar
Dong, L., Schnitker, J., Smith, R.W., and Srolovitz, D.J.: Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study. J. Appl. Phys. 83, 217227 (1998).Google Scholar
Angel, R.J., Zhao, J., and Ross, N.L.: General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).Google Scholar
Zhao, J., Ross, N.L., and Angel, R.J.: New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 60, 263271 (2004).Google Scholar
Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244247 (1985).Google Scholar
Riedl, T., Gemming, T., Dörr, K., Luysberg, M., and Wetzig, K.: Mn valency at La0.7Sr0.3MnO3/SrTiO3 (001) thin film interfaces. Microsc. Microanal. 15, 213221 (2009).CrossRefGoogle Scholar
Jalili, H., Han, J.W., Kuru, Y., Cai, Z., and Yildiz, B.: New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3 . J. Phys. Chem. Lett. 2, 801807 (2011).Google Scholar
Lee, W., Han, J.W., Chen, Y., Cai, Z., and Yildiz, B.: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 79097925 (2013).CrossRefGoogle ScholarPubMed
Herger, R., Willmott, P.R., Schlepütz, C.M., Björck, M., Pauli, S.A., Patterson, B.D., Kumah, D., Clark, R., Yacobi, Y., and Döbeli, M.: Structure determination of monolayer-by-monolayer grown La1−x Sr x MnO3 thin films and the onset of magnetoresistance. Phys. Rev. B 77, 085401 (2008).Google Scholar
Dulli, H., Dowben, P.A., Liou, S.H., and Plummer, E.W.: Surface segregation and restructuring of colossal-magnetoresistant manganese perovskites La0.65Sr0.35MnO3 . Phys. Rev. B 62, R14629 (2000).Google Scholar
Abellán, P., Zabaleta, J., Santiso, J., Casanove, M-J., Dix, N., Aguiar, J., Browning, N.D., Mestres, N., Puig, T., Obradors, X., and Sandiumenge, F.: Interface structure governed by plastic and structural dissimilarity in perovskite La0.7Sr0.3MnO3 nanodots on rock-salt MgO substrates. Appl. Phys. Lett. 100, 083104 (2012).Google Scholar
MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314320 (2008).Google Scholar
Harrington, S.A., Zhai, J., Denev, S., and MacManus-Driscoll, J.L.: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6, 491495 (2011).Google Scholar
MacManus-Driscoll, J.L., Suwardi, A., and Wang, H.: Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bull. 40, 933942 (2015).Google Scholar
Moreno, C., Abellán, P., Hassini, A., Ruyter, A., Del Pino, A.P., Sandiumenge, F., Casanove, M-J., Santiso, J., Puig, T., and Obradors, X.: Spontaneous outcropping of self-assembled insulating nanodots in solution derived metallic ferromagnetic La0.7Sr0.3MnO3 films. Adv. Funct. Mater. 19, 21392146 (2009).Google Scholar
Pomar, A., Konstantinovic, Z., Bagués, N., Roqueta, J., Lòpez-Mir, L., Balcells, L., Frontera, C., Mestres, N., Gutiérrez-Llorente, A., Scepanovic, M., Lazarevic, N., Popovic, Z.V., Sandiumenge, F., Martínez, B., and Santiso, J.: Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films. Front. Phys. (2016). http://dx.doi.org/10.3389/fphy.2016.00041.Google Scholar
Asaro, R.J. and Tiller, W.A.: Interface 1morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metall. Trans. 3, 17891796 (1972).Google Scholar
Grinfeld, M.A.: Instability of the separation boundary between a stressed elastic body and a melt. Sov. Phys. Dokl. 31, 831835 (1986).Google Scholar
Srolovitz, J.D.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621625 (1989).Google Scholar
Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335432 (2002).Google Scholar
Abellán, P., Sandiumenge, F., Casanove, M-J., Gibert, M., Palau, A., Puig, T., and Obradors, X.: Interaction betrween solution derived BaZrO3 nanodot interfacial templates and YBa2Cu3O7 films leading to enhanced critical currents. Acta Mater. 59, 20752082 (2011).Google Scholar
Chu, M-W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., and Gössele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructure ferroelectric perovskites. Nat. Mater. 3, 8790 (2004).Google Scholar
Zabaleta, J., Valencia, S., Kronast, F., Moreno, C., Abellán, P., Gázquez, J., Sandiumenge, F., Puig, T., Mestres, N., and Obradors, X.: Photoemission electron microscopy study of sub-200 nm self-assembled La0.7Sr0.3MnO3 epitaxial islands. Nanoscale 5, 29902998 (2013).CrossRefGoogle ScholarPubMed
Gibert, M., Abellán, P., Martínez, L., Román, E., Crespi, A., Sandiumenge, F., Puig, T., and Obradors, X.: Orientation and shape selection of self-assembled epitaxial Ce1−x Gd x O2−y nanostructures grown by chemical solution deposition. CrystEngComm 13, 67196727 (2011).Google Scholar
Gibert, M., Abellán, P., Benedetti, A., Puig, T., Sandiumenge, F., García, A., and Obradors, X.: Self-organized Ce1−x Gd x O2−y nanowire networks with very fast coarsening driven by attractive elastic interactions. Small 6, 27162724 (2010).Google Scholar
Kim, Y., Han, H., Kim, Y., Lee, W., Alexe, M., Baik, S., and Kim, J.K.: Untrahigh density array of epitaxial nanoislands on conducting substrates. Nano Lett. 10, 21412146 (2010).Google Scholar
Carretero-Genevrier, A., Mestres, N., Puig, T., Hassini, A., Oró, J., Pomar, A., Sandiumenge, F., Obradors, X., and Ferain, E.: Single-crystalline La0.7Sr0.3MnO3 nanowires by polymer-template-directed chemical solution synthesis. Adv. Mater. 20, 36723677 (2008).Google Scholar
Sánchez, F., Ocal, C., and Fontcuberta, J.: Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chem. Soc. Rev. 43, 22722285 (2014).Google Scholar
Cavallaro, A., Ballesteros, B., Bachelet, R., and Santiso, J.: Heteroepitaxial orientation control of YSZ films by selective growth on SrO-, TiO2-terminated SrTiO3 crystal surfaces. CrystEngComm 13, 16251631 (2011).Google Scholar
Shiryaev, S.Y., Jensen, F., Hansen, J.L., Petersen, J.W., and Larsen, A.N.: Nanoscale structuring by misfit dislocations in Si1−x Ge x /Si epitaxial systems. Phys. Rev. Lett. 78, 503506 (1997).Google Scholar
Häusler, K., Eberl, K., Noll, F., and Trampert, A.: Strong alignment of self-assembling InP quantum dots. Phys. Rev. B 54, 49134918 (1996).Google Scholar
Springholtz, G. and Wiesauer, K.: Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Phys. Rev. Lett. 88, 015507 (2002).Google Scholar
Lee, Y-W. and Clemens, B.M.: Strain-assisted nanoscale patterning of Co thin films. Phys. Rev. B 71, 245416 (2005).Google Scholar
Brune, H., Giovannini, M., Bromann, K., and Kern, K.: Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451453 (1998).Google Scholar
Zeljkovic, I., Walkup, D., Assaf, B.A., Scipioni, K.L., Sankar, R., Chou, F., and Madhavan, V.: Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10, 849853 (2015).Google Scholar
Hull, R. and Bean, J.C.: Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 17, 507546 (1992).Google Scholar
Yang, B., Liu, F., and Lagally, M.G.: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004).CrossRefGoogle ScholarPubMed
Farokhipoor, S., Magén, C., Venkatesan, S., Íñiguez, J., Daumont, C.J.M., Rubí, D., Snoeck, E., Mostovoy, M., de Graaf, C., Müller, A., Döblinger, M., Scheu, C., and Noheda, B.: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxid. Nature 515, 379383 (2014).Google Scholar
Seidel, J., Singh-Bhalla, G., He, Q., Yang, S-Y., Chu, Y-H., and Ramesh, R.: Domain wall functionality in BiFeO3 . Phase Transitions 86, 5366 (2013).Google Scholar
Balcells, L., Paradinas, M., Baguès, N., Domingo, N., Moreno, R., Galceran, R., Walls, M., Santiso, J., Konstantinovic, Z., Pomar, A., Casanove, M-J., Ocal, C., Martínez, B., and Sandiumenge, F.: Enhanced conduction and ferromagnetic order at (100)-type twin walls in La0.7Sr0.3MnO3 thin films. Phys. Rev. B 92, 075111 (2015).CrossRefGoogle Scholar
Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965971 (1946).CrossRefGoogle Scholar
Lukyanchuk, I.A., Schilling, A., Gregg, J.M., Catalan, G., and Scott, J.F.: Origin of ferroelastic domains in free-standing single-crystal ferroelectric films. Phys. Rev. B 79, 144111 (2009).Google Scholar
Konstantinović, Z., Santiso, J., Balcells, L., and Martínez, B.: Strain-driven self-assembled network of antidots in complex oxide thin films. Small 5, 265 (2009).Google Scholar
Pomar, A., Santiso, J., Sandiumenge, F., Roqueta, J., Bozzo, B., Fronera, C., Balcells, L., Martínez, B., and Konstantinovic, Z.: Growth kinetics engineered magnetoresistance response La2/3Sr1/3MnO3 thin films. Appl. Phys. Lett. 104, 152406 (2014).Google Scholar
Konstantinović, Z., Sandiumenge, F., Peńa, L., Santiso, J., Balcells, L., and Martínez, B.: Self-assembled pit arrays as templates for the integration of Au nano-crystals in oxide surfaces. Nanoscale 5, 10011008 (2013).Google Scholar
de Sousa Pereira, S.M., Martins, M.A., Trindade, T., Watson, I.M., Zhu, D., and Humphreys, C.J.: Controlled integration of nanocrystals in inverted hexagonal nano-pits at the surface of light-emitting heterostructures. Adv. Mater. 20, 10381043 (2008).Google Scholar
Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J.: Formation mechanism of nanotubes in GaN. Phys. Rev. Lett. 79, 28352838 (1997).Google Scholar