Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T20:26:50.925Z Has data issue: false hasContentIssue false

Strain gradients and the strength of nanoporous gold

Published online by Cambridge University Press:  31 January 2011

Brian Derby*
Affiliation:
School of Materials, University of Manchester, Manchester, M1 7HS United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The very high strengths that have been reported for nanoporous gold may be related to strain gradients within the deforming porous microstructure. We present a mechanism-based model for the strength of nanoporous foams that is derived from conventional models for the deformation of macroscopic foams and now includes the influence of strain gradients. This model predicts that the strength of the ligaments within the nanoporous gold is proportional to the ligament diameter raised to the power −0.5. We have used the model to analyze experimental data for the strength of nanoporous gold and find excellent agreement with published data.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H.Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 024301 (2005)CrossRefGoogle Scholar
2.Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., Abraham, F.F.Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006)CrossRefGoogle ScholarPubMed
3.Volkert, C.A., Lilleodden, E.T., Kramer, D., Weissmuller, J.Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006)CrossRefGoogle Scholar
4.Lee, D., Wei, X., Chen, X., Zhao, M., Jun, S.C., Hone, J., Herbert, E.G., Oliver, W.C., Kysar, J.W.Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr. Mater. 56, 437 (2007)CrossRefGoogle Scholar
5.Hakamada, M., Mabuchi, M.Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007)CrossRefGoogle Scholar
6.Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V.Characterization and mechanical behavior of nanoporous gold. Acta Mater. 55, 1343 (2007)CrossRefGoogle Scholar
7.Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D.Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004)CrossRefGoogle ScholarPubMed
8.Greer, J.R., Oliver, W.C., Nix, W.D.Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005)CrossRefGoogle Scholar
9.Dou, R., Derby, B.A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009)CrossRefGoogle Scholar
10.Dou, R., Derby, B.The strength of gold nanowire forests. Scr. Mater. 59, 151 (2008)CrossRefGoogle Scholar
11.Gibson, L.J., Ashby, M.F.The mechanics of 3-dimensional cellular materials. Proc. R. Soc. London, Ser. A 382, 43 (1982)Google Scholar
12.Gibson, L.J., Ashby, M.F.Cellular Solids: Structure and Properties 2nd ed. (Cambridge University Press, Cambridge 1997)CrossRefGoogle Scholar
13.Ashby, M.F.Deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970)CrossRefGoogle Scholar
14.Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.Strain gradient plasticity—Theory and experiment. Acta Metall. Mater. 42, 475 (1994)CrossRefGoogle Scholar
15.Stolken, J.S., Evans, A.G.A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109 (1998)CrossRefGoogle Scholar
16.Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239 (1999)CrossRefGoogle Scholar
17.Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W.Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids 48, 99 (2000)CrossRefGoogle Scholar
18.Every, A.G., McCurdy, A.K.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology: Condensed Matter Vol. 29A (Springer, Berlin, Germany 1992)Google Scholar
19.Volkert, C.A., Lilleodden, E.T.Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006)CrossRefGoogle Scholar
20.Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M.Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008)CrossRefGoogle ScholarPubMed
21.Greer, J.R., Nix, W.D.Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006)CrossRefGoogle Scholar
22.Budiman, A.S., Han, S.M., Greer, J.R., Tamura, N., Patel, J.R., Nix, W.D.A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron x-ray micro diffraction. Acta Mater. 56, 602 (2008)CrossRefGoogle Scholar
23.Maass, R., Van Petegem, S., Grolimund, D., Van Swygenhoven, H., Kiener, D., Dehm, G.Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction. Appl. Phys. Lett. 92, 071905 (2008)CrossRefGoogle Scholar