Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:38:10.309Z Has data issue: false hasContentIssue false

Strain compensation by heavy boron doping in Si1–xGex layers grown by solid phase epitaxy

Published online by Cambridge University Press:  31 January 2011

A. Rodríguez
Affiliation:
Departamento de Tecnología Electróonica, ETSI de Telecomunicacióon, UPM, Ciudad Universitaria s/n, 28040 Madrid, Spain
T. Rodríguez
Affiliation:
Departamento de Tecnología Electróonica, ETSI de Telecomunicacióon, UPM, Ciudad Universitaria s/n, 28040 Madrid, Spain
A. Sanz-Hervás
Affiliation:
Departamento de Tecnología Electróonica, ETSI de Telecomunicacióon, UPM, Ciudad Universitaria s/n, 28040 Madrid, Spain
A. Kling
Affiliation:
Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
J. C. Soares
Affiliation:
Centro de Física Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
M. F. da Silva
Affiliation:
Departamento de Física, Instituto Technolóogico e Nuclear, Estrada Nacional 10, 2685 Sacavém, Portugal
C. Ballesteros
Affiliation:
Departamento de Física, Escuela Politóecnica Superior, Universidad Carlos III, C./Butarque 15, 28911 Leganés, Madrid, Spain
R. M. Gwilliam
Affiliation:
Department of Electronic and Electrical Engineering, University of Surrey, Guildford, Surrey, GU2 5XH, United Kingdom
Get access

Abstract

The strain compensation produced by heavy boron doping in Si1−xGex layers with x = 0.21, 0.26, and 0.34 grown by solid phase epitaxy on (001) Si wafers has been analyzed using high resolution electron microscopy, high resolution x-ray diffractometry, and ion channeling. The structure of the epilayers consists of a defect-free region located next to the layer-substrate interface and a top region which contains strain-relieving defects. In the undoped samples the defect-free layers are partially relaxed and their relaxation increases as the Ge fraction increases. Substitutional boron incorporated to the SiGe lattice to levels of 2.8 ± 0 3 × 1020 cm−3 during the growth process reduces the lattice mismatch between the epilayers and the substrate. The boron-doped, defect-free layers are thicker than the corresponding undoped layers of the same Ge content and their strain relaxation is lower. It has been shown that it is possible to grow at least 27 nm thick defect-free and fully strained heavily boron-doped layers with x = 0.21 by solid phase epitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lin, T. L. and Maserjian, J., Appl. Phys. Lett. 57, 1422 (1990).CrossRefGoogle Scholar
2.Tsaur, B. Y., Chen, C. K., and Marino, S. A., IEEE Electron Device Lett. 12, 293 (1991).CrossRefGoogle Scholar
3.Hong, S. Q., Hong, Q. Z., and Mayer, J. W., J. Appl. Phys. 72, 3821 (1992).CrossRefGoogle Scholar
4.Gwilliam, R. M., Curello, G., Sealy, B. J., Rodríguez, A., Botella, M. L., and Rodríguez, T., presented at the Ion Implantation Technology–96 Meeting, Austin, TX, Nucl. Instrum. Methods, Phys. Res. B (in press).Google Scholar
5.Paine, D. C., Howard, D. J., Stoffel, N. G., and Horton, J. A., J. Mater. Res. 5, 1023 (1990).CrossRefGoogle Scholar
6.Paine, D. C., Evans, N. D., and Stoffel, N. G., J. Appl. Phys. 70, 4278 (1991).CrossRefGoogle Scholar
7.Hong, Q. Z., Zhu, J. G., Mayer, J. W., Xia, W., and Lau, S. S., J. Appl. Phys. 71, 1768 (1992).CrossRefGoogle Scholar
8.Lee, C., Haynes, T. E., and Jones, K. S., Appl. Phys. Lett. 62, 501 (1993).CrossRefGoogle Scholar
9.Chilton, B. T., Robinson, B., Thompson, D. A., Jackman, T. E., and Baribeau, J-M., Appl. Phys. Lett. 54, 42 (1989).CrossRefGoogle Scholar
10.Tillack, B., Zaumseil, P., Morgenstern, G., Krüger, D., and Ritter, G., Appl. Phys. Lett. 67, 1143 (1995).CrossRefGoogle Scholar
11.Bowen, D. K., Loxley, N., Tanner, B. K., Cooke, L., and Capano, M. A., Proc. Mater. Res. Soc. 208, 113 (1991).CrossRefGoogle Scholar
12.Tu, K-N., Mayer, J.W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists (MacMillan, New York, 1992), p. 408.Google Scholar
13.Baker, S. P. and Arzt, E., in Properties of Strained and Relaxed Silicon-Germanium, edited by Kasper, E. (INSPEC, IEE, London, 1995).Google Scholar
14.Herzog, H-J., in Properties of Strained and Relaxed Silicon-Germanium, edited by Kasper, E. (INSPEC, IEE, London, 1995).Google Scholar
15.Wang, J., Xu, Q., Yuan, J., Lu, F., Sun, H., and Wang, X., J. Appl. Phys. 77, 2974 (1995).CrossRefGoogle Scholar
16.Herzog, H-J., Csepregi, L., and Seidel, H., J. Electrochem. Soc. 131, 2969 (1984).CrossRefGoogle Scholar
17.Chu, W-K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic, New York, 1978).CrossRefGoogle Scholar
18.Fiory, A. T., Bean, J. C., Feldman, L. C., and Robinson, I. K., J. Appl. Phys. 56, 1227 (1984).CrossRefGoogle Scholar
19.Rodríguez, A., Rodríguez, T., Kling, A., Soares, J. C., Silva, M. F. da, and Ballesteros, C., J. Appl. Phys. (1996, in press).Google Scholar
20.Timbrell, P. Y., Baribeau, J-M., Lockwood, D. J., and McCaffrey, J. P., J. Appl. Phys. 67, 6296 (1990).CrossRefGoogle Scholar
21.Solmi, S., Landi, E., and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).CrossRefGoogle Scholar
22.Hull, R. and Bean, J. C., in Strained-Layer Superlattices: Materials Science and Technology, edited by Pearsall, T. P., Vol. 33 in the series Semiconductors and Semimetals, edited by R. K. Williardson and A. C. Beer (Academic, New York, 1991).Google Scholar