Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T11:02:26.186Z Has data issue: false hasContentIssue false

Stored elastic energy influence on the elastic–plastic transition of GaAs structures

Published online by Cambridge University Press:  23 September 2011

Eric Le Bourhis*
Affiliation:
Institut P′, UPR 3346 CNRS—Université de Poitiers—ENSMA, SP2MI, BP 30179-F86962 Futuroscope Chasseneuil Cedex, France
Ludovic Largeau
Affiliation:
Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, 91460 Marcoussis, France
Gilles Patriarche
Affiliation:
Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, 91460 Marcoussis, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The (001) GaAs surfaces have been modified by thin elastically stressed InGaAs-buried layers and tested under Berkovich contact. The elastic–plastic transition determined from the pop-in event observed in the force control mode of the indentation machine appears at slightly lower loads (0.44–0.46 mN) when compared to bare GaAs surface (0.50 mN). Estimations indicate that for both studied sublayers, the stored elastic energy is about 20% of the elastic indentation energy reached at elastic–plastic transition when the sublayer is observed not to relax plastically.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Le Bourhis, E. and Patriarche, G.: Plastic deformation of III-V semiconductors under contact loading. Prog. Cryst. Growth Charact. Mater. 47, 1 (2003).CrossRefGoogle Scholar
2.Wang, S. and Pirouz, P.: Mechanical properties of undoped GaAs. III: Indentation experiments. Acta Mater. 55, 5526 (2007).Google Scholar
3.Page, T.F., Oliver, W.C., and McHargue, C.J.: Deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
4.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).CrossRefGoogle Scholar
5.Le Bourhis, E., Patriarche, G., Largeau, L., and Rivière, J.P.: Polarity-induced changes in the nanoindentation response of GaAs. J. Mater. Res. 19, 131 (2004).Google Scholar
6.Le Bourhis, E. and Patriarche, G.: Structure of nanoindentations in n and p heavily doped (001)GaAs. Acta Mater. 56, 1417 (2008).CrossRefGoogle Scholar
7.Jayaweera, N.B., Bushby, A.J., Kidd, P., Kelly, A., and Dunstan, D.J.: Control of plasticity with coherency strain. Philos. Mag. Lett. 79, 343 (1999).CrossRefGoogle Scholar
8.Lloyd, S.J., P’Ng, K.M.Y., Clegg, W.J., Bushby, A.J., and Dunstan, D.J.: Effect of coherency strain on the deformation of InxGa1-xAs superlattices under nanoindentation and bending. Philos. Mag. 85, 2469 (2005).CrossRefGoogle Scholar
9.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
10.Hornstra, J. and Bartels, W.J.: Determination of the lattice constant of epitaxial layers of III-V compounds. J. Cryst. Growth. 44, 513 (1978).CrossRefGoogle Scholar
11.Matthews, J.W.: Misfit Dislocations. In Dislocations in Solids, Vol. 2; edited by Nabarro, F.R.N. (North-Holland Elsevier: Amsterdam, 1979), p. 463.Google Scholar
12.Johnson, K.L.: Contact Mechanics (Cambridge University Press, 1985).CrossRefGoogle Scholar
13.Gerberich, W.W., Nelson, J.C., Lilleoden, E.T., Anderson, P., and Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
14.Kiely, J.D., Hwang, R.Q., and Houston, J.E.: Effect of surface steps on the plastic threshold in nanoindentation. Phys. Rev. Lett. 87, 4424 (1998).CrossRefGoogle Scholar
15.Korte, S., Farrer, I., and Clegg, W.J.: Elastic and plastic properties of InxGa1-xAs. J. Phys. D: Appl. Phys. 41, 205406 (2008).Google Scholar
16.Fischer-Cripps, A.C.: Introduction to Contact Mechanics (Springer-Verlag, New-York, 2000).Google Scholar
17.Chaudhri, M.M.: Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46, 3047 (1998).CrossRefGoogle Scholar
18.Largeau, L., Patriarche, G., and Le Bourhis, E.: Subsurface deformations induced by a Vickers indenter in GaAs/AlGaAs superlattice. J. Mater. Sci. Lett. 21, 401 (2002).CrossRefGoogle Scholar