Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:50:36.301Z Has data issue: false hasContentIssue false

Stoichiometric effects in epitaxial Ba2−xY1−yCu3−zO7−δ thin films on LaAlO3(100)

Published online by Cambridge University Press:  31 January 2011

Douglas J. Carlson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Michael P. Siegal
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Julia M. Phillips*
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
T. H. Tiefel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
J. H. Marshall
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
*
a)Address correspondence to this author.
Get access

Abstract

Stoichiometric deviations of up to ±5% in Ba2YCu3O7−δ, thin films grown by coevaporation on LaAlO3(100) substrates are found to cause (1) a decrease of the critical current density (Jc) of up to an order of magnitude, (2) a depression of the critical temperature (Tc) and a broadening of the superconducting transition width (ΔT), (3) a deterioration of the surface morphology, and (4) a decrease in the crystallinity of the films. The data indicate that composition deviations of greater than ±1% result in degradation of film quality. These findings have significant implications for the degree of composition control required during deposition to produce films with optimized properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example: (a) Garzon, F. H., Beery, J. G., Brown, D. R., Sherman, R. J., and Raistrich, I. D., Appl. Phys. Lett. 54, 1365 (1989); (b) P. R. Broussard, J. H. Claassen, M. S. Osofsky, S. A. Wolf, C. R. Gosset, and R. J. Soulen, Jr. in “Thin Film Processing and Characterization of High-Temperature Superconductors: Anaheim”, edited by J. M. E. Harper, R. J. Colton, and L. C. Feldman, Am. Inst. of Phys. Conf. 165, 28 (1988); and (c) M. Matsumoto, H. Akoh, and S. Takada, J. Appl. Phys. 66, 3907 (1989).CrossRefGoogle Scholar
2Siegal, M. P., Phillips, J. M., Hsieh, Y. F., and Marshall, J. M., submitted to Physica C.Google Scholar
3Siegal, M. P., Phillips, J. M., van Dover, R. B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. (in press).Google Scholar
4Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
5Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. R., and Waszczak, J. V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
6Char, K., Hahn, M. R., Hylton, T. L., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., IEEE Trans, on Mang. 25, 2422 (1989).Google Scholar
7Roth, R. S., Rawn, C. J., Beech, F., Whitler, J. D., and Anderson, J. O., in Ceramic Superconductors II, edited by Yan, M. F. (The American Ceramics Society, Inc., Westerville, OH, 1988), p. 303.Google Scholar