Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T23:17:59.695Z Has data issue: false hasContentIssue false

Static recrystallization and grain growth of accumulative roll bonded aluminum laminates

Published online by Cambridge University Press:  12 October 2017

Laura Lienshöft
Affiliation:
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden D-01062, Germany
Paul Chekhonin
Affiliation:
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden D-01062, Germany
Dana Zöllner
Affiliation:
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden D-01062, Germany
Juliane Scharnweber
Affiliation:
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden D-01062, Germany
Tom Marr
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW Dresden), Institut für Metallische Werkstoffe, D-01069 Dresden, Germany
Tina Krauter
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science & Engineering, Institute I, Erlangen D-91058, Germany
Heinz Werner Hoeppel
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science & Engineering, Institute I, Erlangen D-91058, Germany
Werner Skrotzki*
Affiliation:
Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden D-01062, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Aluminum laminates of high and technical purity layers were produced by accumulative roll bonding (ARB) at room temperature. To study the thermal stability, the laminates after 2 to 9 ARB cycles were annealed between 100 and 400 °C for one hour. Changes of the microstructure were analyzed by electron backscatter diffraction. For low ARB cycle numbers (4 or below) and 300 °C annealing temperature, the deformed technical pure layers start to recrystallize while the high-purity coarse recrystallized layers experience intralayer grain growth. For higher ARB cycle numbers (6 and 8) and an annealing temperature of 300 °C or above, the ultra-fine grained layers of technical purity are consumed by the layer overlapping growth of high-purity grains producing a banded grain structure. For 9 ARB cycles and at an annealing temperature of 400 °C, a globular grain structure develops with grain sizes larger than twice the layer thickness. The effect of impurities on recrystallization and grain growth of ARB laminates is discussed with regard to tailoring its microstructure by heat treatment. For further analyses, the results are compared with Potts model simulations finding a rather good qualitative agreement with the experimental data albeit some simplified model assumptions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Lei Lu

Dedicated to Prof. Dr. Hael Mughrabi on the occasion of his 80th birthday.

References

REFERENCES

Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., and Hong, R.G.: Ultra-find grained bulk aluminium produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221 (1998).Google Scholar
Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T.: Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579 (1999).Google Scholar
Tsuji, N.: Fabrication of bulk nanostructured materials by accumulative roll bonding (ARB). In Bulk Nanostructured Materials, 1st ed., Zehetbauer, M.J. and Zhu, Y.T., eds. (Wiley-VCH, Weinheim, 2009) pp. 235–53.Google Scholar
Chekhonin, P., Beausir, B., Scharnweber, J., Oertel, C-G., Hausöl, T., Höppel, H.W., Brokmeier, H-G., and Skrotzki, W.: Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates. Acta Mater. 60, 4661 (2012).CrossRefGoogle Scholar
Beausir, B. and Fundenberger, J.J.: Software for orientation image mapping. http://www.benoitbeausir.eu/#soft.Google Scholar
Wassermann, G.: Texturen Metallischer Werkstoffe, 2nd ed. (Springer Verlag, Berlin, 1962).CrossRefGoogle Scholar
Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).Google Scholar
Kassner, M.E., McQueen, H.J., Pollard, J., Evangelista, E., and Cerri, E.: Restoration mechanisms in large-strain deformation of high purity aluminium at ambient temperature. Scr. Metall. Mater. 31, 1331 (1994).CrossRefGoogle Scholar
Skrotzki, W., Scheerbaum, N., Oertel, C-G., Brokmeier, H-G., Suwas, S., and Tóth, L.S.: Recrystallization of high-purity aluminium during equal channel angular pressing. Acta Mater. 55, 2211 (2007).CrossRefGoogle Scholar
Evertsson, J., Bertram, F., Zhang, F., Rullik, L., Merte, L.R., Shipilin, M., Soldemo, M., Ahmadi, S., Vinogradov, N., Carlà, F., Weissenrieder, J., Göthelid, M., Pan, J., Mikkelsen, A., Nilsson, J-O., and Lundgren, E.: The thickness of native oxides on aluminium alloys and single crystals. Appl. Surf. Sci. 349, 826 (2015).Google Scholar
Mishin, O.V., Zhang, Y.B., and Godfrey, A.: The influence of multiscale heterogeneity on recrystallization in nickel processed by accumulative roll bonding. J. Mater. Sci. 52, 2730 (2017).Google Scholar
Kamikawa, N., Tsuji, N., Huang, X., and Hansen, N.: Quantification of annealed microstructures in ARB processed aluminium. Acta Mater. 54, 3055 (2006).CrossRefGoogle Scholar
Sun, P-L., Li, W-J., and Hsu, W-C.: Formation of a dominant Dillamore orientation in a multilayered aluminum by accumulative roll bonding. J. Mater. Sci. 51, 3607 (2016).Google Scholar
Zöllner, D.: Grain growth. In Reference Module in Materials Science and Materials Engineering, Hashmi, S., ed. (Elsevier, Oxford, 2016); pp. 129.Google Scholar
Zöllner, D. and Skrotzki, W.: Influence of the subgrain boundaries on coarsening of grain structures. IOP Conf. Ser.: Mater. Sci. Eng. 194, 012049 (2017).Google Scholar