Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:43:20.975Z Has data issue: false hasContentIssue false

Stability of fullerenes under hydrothermal conditions

Published online by Cambridge University Press:  31 January 2011

Wojciech L. Suchanek
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 Japan
Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 Japan
Yury G. Gogotsi
Affiliation:
Department of Mechanical Engineering, M/C 251, University of Illinois at Chicago, Chicago, Illinois 60607-7022
Get access

Abstract

Stability of fullerenes C60 under hydrothermal conditions (200–800 °C, 100 MPa, 20 min–168 h) has been investigated. The reaction products have been characterized by Raman spectroscopy and x-ray diffraction. The fullerenes were stable up to 500 °C, but they decomposed immediately at 800 ±C into amorphous carbon. In the transition region between 600 and 750 °C, longer times and higher temperatures of the hydrothermal treatment favored decomposition of C60 with the formation of amorphous carbon. Addition of nickel to the C60–H2OO system neither suppressed hydrothermal decomposition of C60 nor induced formation of other phases, except of the amorphous carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2.Livingston, K., Science 268, 1637 (1995).CrossRefGoogle Scholar
3.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
4.Richter, H., Emberson, S. C., and Fonseca, A., Revue De L Institut Francais Du Petrole 49, 413 (1994).Google Scholar
5.Dresselhaus, M. S. and Dresselhaus, G., Ann. Rev. Mater. Sci. 25, 487 (1995).CrossRefGoogle Scholar
6.Singh, H. and Srivastava, M., Energy Sources 17, 615 (1995).CrossRefGoogle Scholar
7.Lieber, C. M. and Chen, C. C., Solid State Physics 48, 109 (1994).CrossRefGoogle Scholar
8.Ebbesen, T.W., Ann. Rev. Mater. Sci. 24, 235 (1994).CrossRefGoogle Scholar
9.Rao, C. N. R., Seshadri, R., Govindaraj, A., and Sen, R., Mater. Sci. Eng. Rep. 15, 209 (1995).CrossRefGoogle Scholar
10.Tenne, R., Adv. Mater. 7, 965 (1995).CrossRefGoogle Scholar
11.Takahashi, H., Jeyadevan, B., Tohji, K., Matsuoka, I., Kasuya, A., Nishina, Y., and Nirasawa, T., Proc. Electrochem. Soc. 96–10, 72 (1996).Google Scholar
12.Takahashi, H., Goto, T., Akiyama, Y., Jeyadevan, B., Tohji, K., and Matsuoka, I., Mater. Sci. Eng. A 217/218, 42 (1996).CrossRefGoogle Scholar
13.Tohji, K., Goto, T., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Ohsuna, T., Ito, S., Kasuya, A., Hiraga, K., and Nishina, Y., Proc. Electrochem. Soc. 96–10, 84 (1996).Google Scholar
14.Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., Colbert, D. T., and Smalley, R. E., Science 280, 1253 (1998).CrossRefGoogle Scholar
15.Szucs, A., Loix, A., Nagy, J. B., and Lamberts, L., J. Electroanal. Chem. 397, 191 (1995).CrossRefGoogle Scholar
16.Davis, J. J., Hill, H. A. O., Kurz, A., Leighton, A. D., and Safronov, A. Y., J. Electroanal. Chem. 429, 7 (1997).CrossRefGoogle Scholar
17.Guldi, D. M., J. Phys. Chem. A 101, 3895 (1997).CrossRefGoogle Scholar
18.Yanagida, M., Kuri, T., and Kajiyama, T., Chem. Lett., No. 9, 911 (1997).CrossRefGoogle Scholar
19.Li, Q. Q., Fan, S. H., Han, W. Q., Sun, C. H., and Liang, W.J., Jpn. J. Appl. Phys., Part 2, Letters 36, L501 (1997).Google Scholar
20.Chesnokov, V. V., Zaikovskii, V. I., Buyanov, R. A., Molchanov, V. V., and Plyasova, L. M., Kinetics and Catalysis 35, 130 (1994).Google Scholar
21.Seraphin, S., Zhou, D., Jiao, J., Minke, M. A., Wang, S., Yadav, T., and Withers, J. C., Chem. Phys. Lett. 217, 191 (1994).CrossRefGoogle Scholar
22.Ravichandran, D. and Roy, R., Mater. Res. Bull. 31, 1075 (1996).CrossRefGoogle Scholar
23.Zhao, X. Z., Roy, R., Cherian, K. A., and Badzian, A., Nature (London) 385, 513 (1997).CrossRefGoogle Scholar
24.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., J. Raman Spectrosc. 27, 351 (1996).3.0.CO;2-N>CrossRefGoogle Scholar
25.Gogotsi, Y. G. and Yoshimura, M., Nature (London) 367, 628 (1994).CrossRefGoogle Scholar
26.Gogotsi, Y.G. and Nickel, K. G., Ceram. Eng. Sci. Proc. 18, 747 (1997).CrossRefGoogle Scholar
27.Buseck, P.R., Tsipursky, S. J., and Hettich, R., Science 257, 215 (1992).CrossRefGoogle Scholar
28.Fang, P.H., Zhou, X., Tao, R., Wang, Q., Mu, C., and Wu, X., Innov. Mater. Res. 1, 129 (1996).Google Scholar
29.Seafloor Hydrothermal Systems. Physical, Chemical, Biological, and Geological Interactions, edited by S.E. Humphris, R. A. Ziarenberg, L. S. Mullineaux, and R. E. Thomson (American Geophysical Union, 1995).Google Scholar