Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:19:51.586Z Has data issue: false hasContentIssue false

Spherical iron oxide particles synthesized by an aerosol technique

Published online by Cambridge University Press:  03 March 2011

M.V. Cabañas
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
M. Vallet-Regí*
Affiliation:
Departamento de Química Inorgínica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, and Instituto de Magnetismo Aplicado, Las Rozas, 28230-Madrid, Spain
M. Labeau
Affiliation:
Laboratoire des Materiaux et du Génie Physique, URA 1109, INPG, 38402-St. Martin d'Hères, France
J.M. González-Calbet
Affiliation:
Instituto de Magnetismo Aplicado, Las Rozas, 28230-Madrid, and Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040-Madrid, Spain
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Spherical particles of several iron oxides have been obtained by pyrolysis of an aerosol generated by ultrahigh frequency spraying of a solution. Two different precursor solutions were used to produce the aerosol: Fe(NO3)3 · 9H2O and FeC6H5O7 · 4H2O. The iron nitrate decomposition leads to the formation of α-Fe2O3, while the organic precursor pyrolysis leads to magnetic particles of either γ–Fe2O3 or Fe3O4. Structural phase, particle size, texture, and homogeneity of the products so obtained can be controlled as a function of some synthesis conditions such as precursor solution, temperature, solution concentration, and surrounding atmosphere.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nafis, S., Tang, Z. X., Dale, B., Sorensen, C. M., Hadjipanayis, H., and Klabunde, K. J., J. Appl. Phys. 64, 5835 (1988).CrossRefGoogle Scholar
2Kaczmarek, W. A., Niham, B. W., and Calka, A., J. Appl. Phys. 70, 5909 (1991).CrossRefGoogle Scholar
3Cabañas, M. V., González-Calbet, J. M., Labeau, M., Mollard, P., Pernet, M., and Vallet-Regí, M., J. Solid State Chem. 101, 265 (1992).CrossRefGoogle Scholar
4Langlet, M., Labeau, M., Bochu, B., and Joubert, J. C., IEEE Trans. Magn. MAG–22, 151 (1986).CrossRefGoogle Scholar
5Vallet-Regí, M., Labeau, M., García, E., Cabañas, M. V., González-Calbet, J. M., and Delabouglise, G., Physica C 180, 57 (1991).CrossRefGoogle Scholar
6Vallet-Regí, M., Ragel, V., Roman, J., Martínez, J. L., Labeau, M., and González-Calbet, J. M., J. Mater. Res. 8, 138 (1993).CrossRefGoogle Scholar
7Kanno, Y. and Nakano, K., J. Mater. Sci. Lett. 9, 1229 (1990).CrossRefGoogle Scholar
8Liu, T. Q., Sakurai, O., Mizutani, N., and Kato, M., J. Mater. Sci. 21, 3698 (1986).CrossRefGoogle Scholar
9de Lau, J. G. M., Am. Ceram. Soc. Bull. 49, 572 (170).Google Scholar
10Kanno, Y. and Suzuki, T., J. Mater. Sci. 7, 386 (1988).Google Scholar
11Ishizawa, H., Sakurai, H., Mizutani, N., and Kato, M., Am. Ceram. Soc. Bull. 65, 1399 (1986).Google Scholar
12Powder X-ray Data File, ASTM 24–81.Google Scholar
13Powder X-ray Data File, ASTM 19–629.Google Scholar
14Tang, Z. X., Nafis, S., Sorensen, C. M., Hadjipanayis, H., and Klabunde, K. J., J. Magn. Magn. Mater. 80, 285 (1989).CrossRefGoogle Scholar
15Koch, A. J. and Beckert, J. J., J. Appl. Phys. 39, 1261 (1968).Google Scholar
16Vallet, M., Rodríguez, P., Obradors, X., Isalgué, A., Rodríguez, J., and Pernet, M., J. de Physique 46, C6-335 (1985).Google Scholar