Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:25:40.432Z Has data issue: false hasContentIssue false

Speeding up Film Deposition Rate: Its Effects on Microstructures of YBa2Cu3Oy Superconducting Thick Films

Published online by Cambridge University Press:  31 January 2011

X. F. Zhang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q. X. Jia
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E. J. Peterson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. E. Peterson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Two very different pulsed laser deposition rates, 192 and 6 Å/s, were used to produce 1 μm thick superconducting YBa2Cu3Ox (YBCO) films on (001) SrTiO3 single-crystal substrates at 790 °C. Transmission electron microscopy (TEM) was used to characterize and compare microstructures between the two films. It has been found that the high deposition rate led to a slight deviation from the expected epitaxial orientations, and extra stress was induced in the films by increased lattice mismatch between the films and the substrates. In addition, misoriented YBCO grains were formed in the high-rate films after a thickness of about 150 nm. Postannealing in oxygen had no visible influence on these defects, although superconducting properties were improved significantly. In contrast to the high-rate films, overall epitaxial orientations have been formed in the low-rate films, and no misoriented YBCO grains were found. However, variations in lattice parameters and columnar voids were observed, although their existence apparently does not have considerable influence on superconducting current density (Jc). Cation disorder was observed in both films. A two-step film growth mechanism is concluded which is responsible for the formation of some defects in the high-deposition rate films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimos, D., Chaudhari, P., Mannhart, J., and Le, F. K.Goues, Phys. Rev. Lett. 61, 219 (1988).Google Scholar
2.Zhang, X. F., Miller, D. J., and Talvacchio, J., J. Mater. Res. 11, 2440 (1996).CrossRefGoogle Scholar
3.Zhang, X. F., Todt, V. R., and Miller, D. J., J. Mater. Res. 12, 3029 (1997).CrossRefGoogle Scholar
4.Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
5.Sato, K., Hikata, T., Mukai, H., Ueyama, M., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Magn. 27, 1231 (1991).CrossRefGoogle Scholar
6.Motowidlo, L.R., Gregory, E., Haldar, P., Rice, J.A., and Blaugher, R. D., Appl. Phys. Lett. 59, 736 (1991).CrossRefGoogle Scholar
7.Saitoh, J., Fukutomi, M., Komori, K., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 30, L898 (1991).CrossRefGoogle Scholar
8.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
9.Reade, R. P., Berdahl, P., Russo, R.E., and Garrison, S. M., Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
10.Wu, X. D., Foltyn, S. R., Arendt, P. N., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, J. Y., and Peterson, D. E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
11.Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J.D., Coulter, J. Y., Hults, W. L., Maley, M.P., Safar, H. F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).Google Scholar
12.Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., and Kohno, O., J. Mater. Res. 12, 2913 (1997).Google Scholar
13.Goyal, A., Norton, D. P., Budai, J. D., Paranthaman, M., Specht, E. D., Kroeger, D. M., Christen, D. K., He, Q., Saffian, B., List, F. A., Lee, D. F., Martin, P. M., Klabunde, C. E., Hatfield, E., and Sikka, V. K., Appl. Phys. Lett. 65, 1795 (1996).Google Scholar
14.Norton, D.P., Goyal, A., Budai, J.D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).Google Scholar
15.Hawsey, R. and Peterson, D., Superconductor Industry 9, 23 (1996).Google Scholar
16.Wang, C.P., Do, K. B., Beasley, M.R., Geballe, T. H., and Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
17.Foltyn, S.R., Peterson, E. J., Coulter, J.Y., Arendt, P. N., Jia, Q. X., Dowden, P.C., Maley, M.P., Wu, X. D., and Peterson, D. E., J. Mater. Res. 12, 2941 (1997).CrossRefGoogle Scholar
18.Ye, J. and Nakamura, K., in Metastable Phases and Microstructures, edited by Bormann, R., Mazzone, G., Shull, R.D., Averback, R. S., and Ziolo, R. F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996), p. 429.Google Scholar
19.Peterson, E.J., Arendt, P. N., Coulter, J. Y., Dowden, P. C., Foltyn, S. R., Groves, J.R., Hults, W.L., Smith, J. L., and Willis, J. O., unpublished.Google Scholar
20.Chang, C.C., Wu, X.D., Ramesh, R., Xi, X.X., Ravi, T.S., Venkatesan, T., Hwang, D.M., Muenchausen, R.E., Foltyn, S., and Nogar, N.S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
21.Conder, K. and Krüger, Ch., Physica C 269, 92 (1996).Google Scholar