Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T07:50:45.371Z Has data issue: false hasContentIssue false

Spectroscopic characterization of annealed Si1−xCx films synthesized by ion implantation

Published online by Cambridge University Press:  31 January 2011

G. Compagnini
Affiliation:
Dipartimento di Fisica, Corso Italia 57 Catania, and Istituto Nationale per le fisica della Matezie, Corso Italia 57 Catania, Italy
L. Calcagno
Affiliation:
Dipartimento di Fisica, Corso Italia 57 Catania, and Istituto Nationale per le fisica della Matezie, Corso Italia 57 Catania, Italy
G. Foti
Affiliation:
Dipartimento di Fisica, Corso Italia 57 Catania, and Istituto Nationale per le fisica della Matezie, Corso Italia 57 Catania, Italy
G. Baratta
Affiliation:
Osservatorio Astrofisico, Citta' Universitaria, V. le A. Doria Catania, Italy
Get access

Abstract

Amorphous hydrogenated silicon carbon alloys were synthesized by C2H2 ions implantation in a silicon substrate at different fluences to obtain samples with different carbon atomic concentrations (10−50 at. %). As-implanted and subsequently annealed samples were investigated by using Rutherford backscattering, infrared, and Raman spectroscopies in order to follow the crystallization process. It was found that crystallization of stoichiometric SiC phase starts at 1000 °C both in low and high containing carbon films, while at the stoichiometric composition silicon (or carbon) was found to clusterize into homonuclear islands even at lower temperatures. The analysis of the fundamental absorption edge reveals the presence of an optical energy gap of about 1.3 eV independently on the film composition in the as-implanted samples, while after the thermal process at 1000 °C it increases to 2 eV for a carbon concentration below 0.5 and up to 1.8 eV for all those samples with a carbon excess.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelner, G., Binari, S., Shur, M., Sleger, K., Palmour, J., and Kong, H., Mater. Sci. Eng. Bil, 121 (1992).CrossRefGoogle Scholar
2.Shnai, K., Scott, R. S., and Baliga, B. J., IEEE Trans. Electron Devices 36, 1811 (1989).CrossRefGoogle Scholar
3.Edmond, J. A., Das, K., and Davis, R. F., J. Appl. Phys. 63, 922 (1988).CrossRefGoogle Scholar
4.Palmour, J. W., Kong, H. S., and Davis, R. F., Appl. Phys. Lett. 51, 2028 (1987).CrossRefGoogle Scholar
5.Derst, G., Wilbertz, C., Bathia, K. L., Kratschmer, W., and Kalbitzer, S., Appl. Phys. Lett. 54, 1722 (1989).CrossRefGoogle Scholar
6.Bullot, J. and Schmidt, H. P., Phys. Status Solidi 143, 345 (1987).CrossRefGoogle Scholar
7.Bullot, J., Gauthier, H., Schmidt, H. P., Catherine, Y., and Zammouche, A., Philos. Mag. B 49, 489 (1984).CrossRefGoogle Scholar
8.Lear, A. J. and Khan, I. H., Thin Solid Films 5, 145 (1970).CrossRefGoogle Scholar
9.Mogab, C. J. and Leamy, H. J., J. Appl. Phys. 45, 1075 (1974).CrossRefGoogle Scholar
10.Borders, J. A., Picraux, S. T., and Beezhold, W., Appl. Phys. Lett. 18, 277 (1971).Google Scholar
11.Dexter, R. J., Watelski, S. B., and Picraux, S. T., Appl. Phys. Lett. 23, 455 (1973).CrossRefGoogle Scholar
12.Kimura, T., Kagiyama, S., and Yugo, S., Thin Solid Films 94, 191 (1982).CrossRefGoogle Scholar
13.Ishikawa, J. and Tsuji, H., Nucl. Instrum. Methods B 74, 118 (1993).CrossRefGoogle Scholar
14.Compagnini, G., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B 80/81978 (1993).CrossRefGoogle Scholar
15.Kimura, T., Kagiyama, S., and Yugo, S., Thin Solid Films 81, 319 (1981).CrossRefGoogle Scholar
16.Martin, P., Daudin, B., Dupuy, M., Ermolieff, A., Olivier, M., Papon, A. M., and Rolland, G., J. Appl. Phys. 67, 2908 (1990).CrossRefGoogle Scholar
17.Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spec-trometry (Academic Press, New York, 1978).Google Scholar
18.Doyle, B. L. and Peercy, P. S., Appl. Phys. 34, 811 (1979).Google Scholar
19.Yoshii, K., Suzaki, Y., Takeuchi, A., Yasutake, K., and Kawabe, H., Thin Solid Films 199, 85 (1991).CrossRefGoogle Scholar
20.Morimoto, A., Kataoda, T., Kumeda, M., and Shimizu, T., Philos. Mag. 50, 517, (1984).CrossRefGoogle Scholar
21.Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
22.Tauc, J., in Amorphous and Liquid Semiconductors edited by Tauc, J. (Plenum Press, London, 1974), p. 159.CrossRefGoogle Scholar