Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T22:32:14.774Z Has data issue: false hasContentIssue false

Spatial variations in composition in high-critical-current-density Bi-2223 tapes

Published online by Cambridge University Press:  31 January 2011

T. G. Holesinger
Affiliation:
MST-6, Metallurgy Group, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. F. Bingert
Affiliation:
MST-6, Metallurgy Group, Materials Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Teplitsky
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
Q. Li
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
R. Parrella
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
M. P. Rupich
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
G. N. Riley Jr.
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
Get access

Abstract

A detailed compositional analysis of high-critical-current-density (Jc) (55 and 65 kA/cm2 at 77 K) (Bi,Pb)2Sr2Ca2Cu3Oy (Bi-2223) tapes was undertaken by energy dispersive spectroscopy in the transmission electron microscope. Structural features were coupled with characteristic compositions of the Bi-2223 phase. The average of all compositional measurements of the Bi-2223 phase was determined to be Bi1.88Pb0.23Sr1.96Ca1.95Cu2.98Oy. However, spatial variations in the Bi-2223 composition and differing phase equilibria were found throughout the filament structure. In particular, a considerable range of Bi-2223 compositions can be found within a single tape, and the lead content of the Bi-2223 phase is significantly depressed in the vicinity of lead-rich phases. The depletion of lead in the Bi-2223 phase around the 3221 phases may be a current-limiting microstructure in these tapes.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rupich, M.W., Li, Q., Parrella, R.D., Teplitsky, M., Podtburg, E.R., Carter, W.L., Hancock, S., Marquardt, J., Schreiber, J.D., Parker, D.R., Riley, G.N. Jr, Masur, L.J., Miles, P.K., and Holesinger, T.G., in 1998 International Workshop on Superconductivity, Okinawa, Japan (ISTEC, Japan, 1998).Google Scholar
2.Li, Q., Holesinger, T.G., Cai, X.Y., Riley, G.N. Jr, Parrella, R.D., Fleshler, S., Rupich, M.W., Polyanskii, A.E., Malozemoff, A.P., and Larbalestier, D.C., in 1997 International Workshop on Superconductivity, Hawaii (ISTEC, Japan, 1997).Google Scholar
3.Endo, K., Yamasaki, H., Misawa, S., Yoshida, S., and Kajimura, K., Nature 355, 327 (1992).CrossRefGoogle Scholar
4.Hakuraku, Y. and Mori, Z., J. Appl. Phys. 73, 309 (1993).CrossRefGoogle Scholar
5.Oh, S.S. and Osamura, K., Supercond. Sci. Technol. 4, 239 (1991).CrossRefGoogle Scholar
6.Nomura, S., Fuke, H., Yoshino, H., and Ando, K., Supercond. Sci. Technol. 6, 858 (1993).CrossRefGoogle Scholar
7.Kaesche, S., Majewski, P., and Aldinger, F., J. Electron. Mater. 24, 1829 (1995).CrossRefGoogle Scholar
8.Bernik, S., Supercond. Sci. Technol. 10, 671 (1997).CrossRefGoogle Scholar
9.High, Y.E., Feng, Y., Sung, Y.S., Hellstrom, E.E., and Larbalestier, D.C., Physica C 220, 81 (1994).CrossRefGoogle Scholar
10.Gotz, D., Hadam, B., Idink, H., Hahn, T., Gobbels, M., and Woermann, E., Physica C 242, 291 (1995).CrossRefGoogle Scholar
11.Wong-Ng, W., Cook, L.P., Greenwood, W., and Jiang, F., Physica C 279, 31 (1997).CrossRefGoogle Scholar
12.Zhu, W., Kuo, C.K., and Nicholson, S., J. Am. Ceram. Soc. 80, 1975 (1997).CrossRefGoogle Scholar
13.Luo, J.S., Merchant, N., Maroni, V.A., Riley, G.N. Jr, and Carter, W.L., Appl. Phys. Lett. 63, 690 (1993).CrossRefGoogle Scholar
14.Rubin, L.M., Orlando, T.P., Vander Sande, J.B., Gorman, G., Savoy, R., Swope, R., and Beyers, R., Appl. Phys. Lett. 61, 1977 (1992).CrossRefGoogle Scholar
15.Tetenbaum, M., Hash, M., Tani, B.S., Luo, J.S., and Maroni, V.A., Physica C 249, 396 (1995).CrossRefGoogle Scholar
16.Murayama, N., Awano, M., Kodama, Y., Sakaguchi, S., and Wakai, F., J. Mater. Sci. 27, 3642 (1992).CrossRefGoogle Scholar
17.Merchant, N., Luo, J.S., Maroni, V.A., Riley, G.N. Jr, and Carter, W.L., Appl. Phys. Lett. 65, 1039 (1994).CrossRefGoogle Scholar
18.Wu, L-J., Wang, Y.L., Bian, W., Zhu, Y., Thurston, T.R., Sabatini, R.L., Haldar, P., and Suenaga, M., J. Mater. Res. 12, 3055 (1997).CrossRefGoogle Scholar
19.Eibl, O., Supercond. Sci. Technol. 8, 833 (1995).CrossRefGoogle Scholar
20.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
21.Hatano, T., Katsumi, A., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
22.Liu, H.K., Dou, S.X., Savvides, N., Zhou, J.P., Tan, N.X., Bourdillon, A.J., Kviz, M., and Sorrell, C.C., Physica C 157, 93 (1989).CrossRefGoogle Scholar
23.MacManus-Driscoll, J.L., Bravman, J.C., Savoy, R.J., Gorman, G., and Beyers, R.B., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
24.Majewski, P., Kaesche, S., Su, H.L., and Aldinger, F., Physica C 221, 295 (1994).CrossRefGoogle Scholar
25.Iwai, Y., Yoshi, Y., Saito, H., and Takata, M., Physica C 170, 319 (1990).CrossRefGoogle Scholar
26.MacManus-Driscoll, J.L., Yi, Z., J. Am. Ceram. Soc. 81, 1322 (1998).CrossRefGoogle Scholar
27.Yoshida, K., Sano, Y., and Tomii, Y., Supercond. Sci. Technol. 8, 329 (1995).CrossRefGoogle Scholar
28.Luo, J.S., Merchant, N., Maroni, V.A., Hash, M., and Rupich, M., in High Temperature Superconductors: Synthesis, Processing, and Large-Scale Applications, edited by Balachandran, U., McGinn, P.J., and Abell, J.S. (TMS, Warrendale, PA, 1996), pp. 33.Google Scholar
29.Parrell, J.A., Polyanskii, A.A., Pashitski, A.E., and Larbalestier, D.C., Supercond. Sci. Technol. 9, 393 (1996).CrossRefGoogle Scholar
30.Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., and Riley, G.N. Jr, Appl. Supercond. 1, 101 (1993).CrossRefGoogle Scholar
31.Wu, K.T., Fischer, A.K., Maroni, V.A., and Rupich, M.W., J. Mater. Res. 12, 1195 (1997).CrossRefGoogle Scholar
32.Parrell, J.A., Larbaleister, D.C., Riley, G.N. Jr, Li, Q., Carter, W.L., Parrella, R.D., and Teplitsky, M., J. Mater. Res. 12, 2997 (1997).CrossRefGoogle Scholar
33.Oh, S.S., Kubota, T., and Osamura, K., Physica C 171, 265 (1990).CrossRefGoogle Scholar
34.Nomura, S., Yoshino, H., and Ando, K., Physica C 224, 51 (1994).CrossRefGoogle Scholar
35.Holesinger, T.G., Bingert, J.F., Willis, J.O., Maroni, V.A., Fisher, A.K., and Wu, K.T., J. Mater. Res. 12, 3046 (1997).Google Scholar
36.Mackenzie, A.P., Physica C 178, 363 (1991).CrossRefGoogle Scholar
37.Bando, Y., Kijima, T., Kitami, Y., Tanaka, J., Izumi, F., and Yokoyama, M., Jpn. J. Appl. Phys. 27, L358 (1988).CrossRefGoogle Scholar
38.Eibl, O., Microsc. Res. Tech. 30, 218 (1995).CrossRefGoogle Scholar
39.Zandbergen, H.W., Huang, Y.K., Menken, M.J.V, Li, J.N., Kadowaki, K., Menovsky, A.A., van Tendeloo, G., and Amelinckx, S., Nature 332, 620 (1988).CrossRefGoogle Scholar
40.Chippindale, A.M., Hibble, S.J., Hriljac, J.A., Cowey, L., Bagguley, D.M.S, Day, P., and Cheetham, A.K., Physica C 152, 154 (1988).CrossRefGoogle Scholar
41.Holesinger, T.G., Miller, D.J., and Chumbley, L.S., Physica C 217, 85 (1993).CrossRefGoogle Scholar
42.Rupich, M.W. (1999, private communication).Google Scholar
43.Marinenko, R.B. and Teplitsky, M., Microsc. Microanal. 3, 504 (1997).CrossRefGoogle Scholar
44.Miller, D.J. and Holesinger, T.G., Appl. Supercond. 1, 121 (1993).CrossRefGoogle Scholar
45.Holesinger, T.G., Miller, D.J., and Chumbley, L.S., J. Mater. Res. 7, 1658 (1992).CrossRefGoogle Scholar
46.Fiori, C.E., Swyt-Thomas, C.R., and Myklebust, R.L., Desk Top Spectrum Analyzer v.2.5.1., NIST-NIH Std. Ref. Database #36, Standard Reference Data (NIST, Bldg. 221/A322 Gaithersburg, MD, 1996).Google Scholar
47.Cliff, G. and Lorimer, G.W., J. Microsc. 103, 203 (1975).CrossRefGoogle Scholar
48.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy, 1st ed. (Plenum Press, New York, 1996), pp. 553634.CrossRefGoogle Scholar
49.Dorris, S.E., Prorok, B.C., Lanagan, M.T., Browning, N.B., Hagen, M.R., Parrell, J.A., Feng, Y., Umezawa, A., and Larbalestier, D.C., Physica C 223, 163 (1994).CrossRefGoogle Scholar
50.Luo, J.S., Dorris, S.E., Fischer, A.K., LeBoy, J.S., Maroni, V.A., Fend, Y., and Larbalestier, D.C., Supercond. Sci. Technol. 9, 412 (1996).CrossRefGoogle Scholar
51.Anderson, J.W., Dorris, S.E., Parrell, J.A., and Larbalestier, D.C., J. Mater. Res. 14, 340 (1998).CrossRefGoogle Scholar
52.Tallon, J.L., Buckley, R.G., Gilberd, P.W., Presland, M.R., Brown, I.W.M, Bowden, M.E., Christian, L.A., and Goguel, R., Nature 333, 153 (1988).CrossRefGoogle Scholar
53.Paulose, P.L., Patil, S., Frank, H., and Guntherodt, G., Physica C 208, 11 (1993).CrossRefGoogle Scholar
54.Regi, F.X., Schneck, J., Savary, H., Mellet, R., Muller, P., and Kleiner, R., J. Phys. III 4, 2249 (1994).Google Scholar
55.Regi, F.X., Schneck, J., Savary, H., Daguet, C., and Huet, F., IEEE Trans. Appl. Supercond. 3, 1190 (1993).CrossRefGoogle Scholar
56.Eibl, O., Physica C 175, 419 (1991).CrossRefGoogle Scholar
57.Larbalestier, D.C., Anderson, J.W.A, Babcock, S.E., Cai, X.Y., Dorris, S.E., Feldmann, M., Jiang, J., Li, Q., Parrell, J.A., Parrella, R., Polak, M., Polyanskii, A., Riley, G.N. Jr, Rupich, M., and Wu, Y., in Advances in Superconductivity XI, Proc. 11th International Symp. on Superconductivity (ISS '98), November 16–19, 1998, Fukuoka, Japan, edited by Koshizuka, N. and Tajima, S. (SpringerVerlag, Tokyo, New York, 1999).Google Scholar
58.Holesinger, T.G., Bingert, J.F., Willis, J.O., Li, Q., Parrella, R.D., Teplitsky, M.D., Rupich, M.W., and Riley, G.N. Jr, IEEE Trans. Appl. Supercond. 9, 2440 (1999).CrossRefGoogle Scholar