Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:48:50.799Z Has data issue: false hasContentIssue false

Solvothermal route to Bi3Se4 nanorods at low temperature

Published online by Cambridge University Press:  31 January 2011

Yuan-fang Liu
Affiliation:
Structure Research Laboratory, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Jing-hui Zeng
Affiliation:
Structure Research Laboratory, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Wei-xin Zhang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Wei-chao Yu
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Yi-tai Qian*
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Jin-bo Cao
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
Wan-qun Zhang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, The People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

Nanorods Bi3Se4 were synthesized directly through the reaction between BiCl3 and elemental selenium in an autoclave with hydrazine hydrate as solvent at 165 °C for 10 h. X-ray powder diffraction patterns, x-ray photoelectron spectra, and transmission electron microscope images show that the products are well-crystallized hexagonal Bi3Se4 nanorods. The solvent hydrazine hydrate played an important role in formation and growth of Bi3Se4 nanorods. The possible reaction mechanism was proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
2.Brus, L.E.. J.Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
3.Wang, Y. and Herron, N., J.Phys. Chem. 95, 525 (1991);Google Scholar
Zhan, J.H., Yang, X.G., Wang, D.W., Li, S.D., Xie, Y., Xia, Y.N., and Qian, Y.T., Adv. Mater. 12, 1348 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
4.Spahr, M.E., Bitterli, P., Nesper, R., Müller, M., Krumeich, F., Nissen, H.U., Angew Chem. Int. Ed. 37, 1263 (1998); Angew Chem. 110, 1339 (1998).Google Scholar
5.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature 360, 441 (1992).Google Scholar
6.Feldman, Y., Wasserman, E., Srolovitz, D.J., and Tenne, R., Science 267, 222 (1995).CrossRefGoogle Scholar
7.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Souie, S.G., and Zettl, A., Science 269, 966 (1995).CrossRefGoogle Scholar
8.Weng-Sieh, Z., Cherrey, K., Chopra, N.G., Blase, X., Miyamoto, Y., Rubio, A., Cohen, M.L., Louie, S.G., Zettl, A., and Gronsky, R., Phys. Rev. B 51, 11229 (1995).CrossRefGoogle Scholar
9.Archibald., D.D. and Mann, S., Nature 364, 430 (1993).Google Scholar
10.Dai, H., Wong, E.W., Lu, Y.Z., Fan, S.S., and Lieber, C.M., Nature 375(1995).Google Scholar
11.Yang., P.D. and Lieber, C.M., Science 273, 1836 (1996).CrossRefGoogle Scholar
12.Xu, X.L., Yu, D.P., Feng, S.Q., Duan, X.F., and Zhang, Z., Nano-struct. Mater. 8, 373 (1997).CrossRefGoogle Scholar
13.Han, W.Q., Fan, S.S., Li, Q.Q., and Hu, Y.D., Science 277, 1287 (1997).CrossRefGoogle Scholar
14.Han, W.Q., Fan, S.S., Li, Q.Q., Gu, B.L., Zhang, X.B., and Yu, D.P., Appl. Phys. Lett. 71, 2271 (1997).CrossRefGoogle Scholar
15.Guerret-Piecourt, C., Le bouar, Y., Loiseau, A., and Pascard, H., Nature 372, 761 (1994).CrossRefGoogle Scholar
16.Ajayan, P.M., Stephan, O., Redlich, P., and Colliex, C., Nature 375, 564 (1995).Google Scholar
17. (a) Preston., C.K. and Moskovits, M., J. Phys. Chem. 97, 8495 (1993);CrossRefGoogle Scholar
(b)Moutkevitch, D., Bigioni, T., Moskovits, M., and Xu, J.M.. J. Phys. Chem. 100, 14037 (1996);CrossRefGoogle Scholar
(c)Zhang, Z., Ying, J.Y., and Dresselhaus, M.S., J. Mater. Res. 13, 1745 (1998).Google Scholar
18.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
19.Li, Y.D., Sui, M., Ding, Y., Zhang, G.H., Zhuang, J., and Wang, C., Adv. Mater. 12, 818 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
20.Mongellaz, F., Fillot, A., Griot, R., and De lallee, J., Proc. SPIE-Int. Soc. Opt. Eng. 2227, 156 (1994).Google Scholar
21.Nakagiri, Y., Gyoten, H., Myake, A., and Yamamoto, Y., Jpn. Kokai Tokkyo Koho JP 07,236,801 (95,326,801).Google Scholar
22.Hayashi, Y., Harigai, M., Kageyama, Y., and Ido, Y., Jpn. Kokai Tokkyo Koho JP 07,246,777 (95,246,777).Google Scholar
23. Chem. Abstr. 61, 11759f (1964).Google Scholar
24.Dubis, P., Lelieur, J.P., and Lepoutre, G., Inorg. Chem. 28, 195 (1989).CrossRefGoogle Scholar
25.Henshaw, G., Parkin, I.P., and Shaw, G.A., J. Chem. Soc., Dalton Trans. 231 (1997).Google Scholar
26.Cotton., F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 3rd ed. (John Wiley and Sons, New York, 1972).Google Scholar
27.Li, Y.D., Ding, Y., Liao, H.W., and Qian, Y.T., J. Phys. Chem. Solids 60, 965 (1999).Google Scholar
28.Matsumoto, K., Uemura, H., and Kawano, M., Chem. Lett. 1215 (1994).Google Scholar
29.Bowmaker, G.A., Hannaway, F.M.M., Junk, P.C., Lee, A.M., Skelton, B.W., and White, A.H., Aust. J. Chem. 51, 331 (1998); (b) 51, 325 (1998).Google Scholar