Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:06:36.707Z Has data issue: false hasContentIssue false

Solvent-induced stresses in glassy polymer: Elastic model

Published online by Cambridge University Press:  31 January 2011

Wei-Lung Wang
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan
J. R. Chen
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan
Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan
Get access

Abstract

The solvent-induced stresses in glassy polymers were investigated. The mass transport accounts for case I, case II, and anomalous transport. Case I transport is attributed to the concentration gradient, whereas case II transport is attributed to stress relaxation. Anomalous transport is the mixture of case I and case II. Both one-side and two-side mass transports with the boundary condition of constant surface concentration are considered. The stresses and longitudinal displacement arising from the mass transport are formulated based on the linear elasticity theory. The maximum stress is always located at the surface at the initial time. The stresses are a function of the partial molal volume, Young's modulus, and Poisson's ratio. From the longitudinal displacement data, the partial molal volume was determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alfrey, T., Gurnee, E.F., and Lloyd, W.G., J. Polym. Sci. C, 12, 249 (1966).CrossRefGoogle Scholar
2.Chen, S.P. and Edin, J.A.D, Polym. Eng. Sci. 20, 40 (1980).CrossRefGoogle Scholar
3.Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, United Kingdom, 1975).Google Scholar
4.Thomas, N.L. and Windle, A.H., Polymer 19, 255 (1978).CrossRefGoogle Scholar
5.Thomas, N.L. and Windle, A.H., Polymer 23, 529 (1982).CrossRefGoogle Scholar
6.Hopfenberg, H.B., Nicolais, L., and Driole, E., Polymer 17, 195 (1976).CrossRefGoogle Scholar
7.Friedman, A. and Rossi, G., Macromolecules 30, 153 (1997).CrossRefGoogle Scholar
8.Govindjee, S. and Simo, J.C., J. Mech. Phys. Solids 41, 863 (1993).CrossRefGoogle Scholar
9.Hui, C.Y. and Wu, K.C., J. Appl. Phys. 61, 5129 (1987).CrossRefGoogle Scholar
10.Hui, C.Y. and Wu, K.C., J. Appl. Phys. 61, 5137 (1987).CrossRefGoogle Scholar
11.Peterlin, A., J. Res. Natl. Bur. Stand. 81A, 243 (1977).CrossRefGoogle Scholar
12.Wang, T.T., Kwei, T.K., and Frisch, H.L., J. Polym. Sci. A27, 2019 (1969).Google Scholar
13.Kwei, T.K., Wang, T.T., and Zupko, H.M., Macromolecules 5, 645 (1972).CrossRefGoogle Scholar
14.Kwei, T.K. and Zupko, H.M., J. Polym. Sci. A2(7), 876 (1969).Google Scholar
15.Wang, T.T. and Kwei, T.K., Macromolecules 6, 919 (1973).CrossRefGoogle Scholar
16.Frisch, H.L., Wang, T.T., and Kwei, T.K., J. Polym. Sci. A2(7), 8 (1969).Google Scholar
17.Harmon, J.P., Lee, S., and Li, J.C.M, J. Polym. Sci. A25, 3215 (1987).CrossRefGoogle Scholar
18.Harmon, J.P., Lee, S., and Li, J.C.M, Polymer 29, 1221 (1998).CrossRefGoogle Scholar
19.Lin, C.B., Lee, S., and Liu, K.S., Polym. Eng. Sci. 30, 1399 (1990).CrossRefGoogle Scholar
20.Lee, S., J. Mater. Res. 11, 2403 (1996).CrossRefGoogle Scholar
21.Ouyang, H. and Lee, S., J. Mater. Res. 12, 2794 (1997).CrossRefGoogle Scholar
22.Wu, T., Lee, S., and Chen, W-C., Macromolecules 28, 5751 (1995).CrossRefGoogle Scholar
23.Ouyang, H., Chen, C-C., Lee, S., and Yang, H., J. Polym. Sci. B36, 163 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
24.Prussin, S., J. Appl. Phys. 32, 1876 (1961).CrossRefGoogle Scholar
25.Li, J.C.M, Metall. Mater. Trans. 9A, 1353 (1979).Google Scholar
26.Huang, D.R. and Lee, S., in Micromechanics of Advanced Materials, edited by Chu, S.N.G, Liaw, P.K., Arsenault, R.J., Sadananda, K., Chan, K.S., Gerberich, W.W., Chau, C.C., and Kung, T.M. (Minerals, Metals, and Materials Society, Warrendale, PA, 1995), p. 273.Google Scholar
27.Chu, J.L. and Lee, S., J. Appl. Phys. 73, 3211 (1993).CrossRefGoogle Scholar
28.Chu, J.L. and Lee, S., J. Appl. Phys. 73, 2239 (1993).CrossRefGoogle Scholar
29.Larche, F.C. and Cahn, J.W., Acta Metall. 30, 1835 (1982).CrossRefGoogle Scholar
30.Larche, F.C. and Cahn, J.W., J. Res. Natl. Bur. Stand. 89, 467 (1984).CrossRefGoogle Scholar
31.Kim, M. and Neogi, P., J. Appl. Polym. Sci. 29, 731 (1984).CrossRefGoogle Scholar
32.Lee, S. (unpublished).Google Scholar
33.Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970), Chap. 13.Google Scholar
34.Astarita, G. and Sarti, G.C., Polym. Eng. Sci. 18, 388 (1978).Google Scholar
35.Astarita, G. and Joshi, S., J. Membr. Sci. 4, 165 (1978).CrossRefGoogle Scholar
36.Sarti, G.C., Gostoli, C., and Riccioli, G., J. Appl. Polym. Sci. 32, 3627 (1986).CrossRefGoogle Scholar
37.Gostoli, C. and Sarti, G.C., Polym. Eng. Sci. 22, 1018 (1982).CrossRefGoogle Scholar
38.Gostoli, C. and Sarti, G.C., Chem. Eng. Commun. 21, 67 (1983).CrossRefGoogle Scholar
39.Nicolais, L., Drioli, E., Hopfenberg, H.B., and Tidone, D., Polymer 18, 1137 (1977).CrossRefGoogle Scholar
40.Sarti, G.C., Polymer 20, 827 (1979).CrossRefGoogle Scholar