Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:54:27.806Z Has data issue: false hasContentIssue false

Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybrid nanowires

Published online by Cambridge University Press:  16 May 2011

Chuanwei Cheng
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
Yee Yan Tay
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
Huey Hoon Hng
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
Hong Jin Fan*
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We exploit a facile synthetic route to fabricate dendritic SnO2/TiO2 nanodentrites with a twofold point symmetry by a combination of vapor transport deposition method for the SnO2 nanowire backbones and subsequent hydrothermal heteroepitaxial growth of TiO2 nanorod branches. As a result of the good lattice matching and same rutile crystal structures between SnO2 and TiO2, an interface epitaxy is established accounting for the high symmetry. Proof-of-principle demonstration of the function in photoelectrochemical water splitting is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yan, H.Q., He, R.R., Johnson, J., Law, M., Saykally, R.J., and Yang, P.D.: Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728 (2003).CrossRefGoogle ScholarPubMed
2.Xiang, J., Vidan, A.R., Westervelt, M., and Lieber, C.M.: Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 1, 208 (2006).CrossRefGoogle ScholarPubMed
3.Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).CrossRefGoogle ScholarPubMed
4.Matthew, J.B. and Song, J.: Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050 (2009).Google Scholar
5.Cheng, C.W., Liu, B., Sie, E.J., Zhou, W.W., Zhang, J.X., Gong, H., Huan, C.H.A., Sum, T.C., Sun, H.D., and Fan, H.J.: ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties. J. Phys. Chem. C 114, 3863 (2010).CrossRefGoogle Scholar
6.Qian, F., Li, Y., Gradecak, S., Park, H.G., Dong, Y.J., Ding, Y., Wang, Z.L., and Lieber, C.M.: Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701 (2008).CrossRefGoogle ScholarPubMed
7.Mieszawska, J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P.: The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3, 722 (2007).CrossRefGoogle ScholarPubMed
8.Lin, Y.J., Zhou, S., Liu, X.H., Sheehan, S., and Wang, D.W.: TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting. J. Am. Chem. Soc. 131, 2772 (2009).Google Scholar
9.Hwang, Y.J., Boukai, A., and Yang, P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).Google Scholar
10.Dong, A.G., Tang, R., and Buhro, W.E.: Solution-based growth and structural characterization of homo- and hetero-branched semiconductor nanowires. J. Am. Chem. Soc. 129, 12254 (2007).CrossRefGoogle ScholarPubMed
11.Chen, C.H., Jin, L., Espinal, A.E., Firliet, B.T., Xu, L.P., Aindow, M., Joesten, R., and Suib, S.L.: Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes. Small 6, 988 (2010).Google Scholar
12.Fan, F.R., Ding, Y., Liu, D.Y., Tian, Z.Q., and Wang, Z.L.: Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 131, 12026 (2009).CrossRefGoogle ScholarPubMed
13.Zhang, D.F., Sun, L.D., Jia, C.J., Yan, Z.G., You, L.P., and Yan, C.H.: Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: A case of interfacial lattice compatibility. J. Am. Chem. Soc. 127, 13492 (2005).Google Scholar
14.Wang, N.X., Sun, C.H., Zhao, Y., Zhou, S.Y., Chen, P., and Jiang, L.: Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J. Mater. Chem. 18, 3909 (2008).CrossRefGoogle Scholar
15.Gubbala, S., Chakrapani, V., Kumar, V., and Sunkara, M.K.: Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 18, 2411 (2008).Google Scholar
16.Qian, J.F., Liu, P., Xiao, Y., Jiang, Y., Cao, Y.L., Ai, X.P., and Yang, H.X.: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21, 3663 (2009).Google Scholar
17.Feng, X.J., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).Google Scholar
18.O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
19.Tan, E.T.H., Ho, G.W., Wong, A.S.W., Kawi, S., and Wee, A.T.S.: Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology 19, 255706 (2008).CrossRefGoogle Scholar
20.Cheng, C.W., Liu, B., Yang, H.Y., Zhou, W.W., Sun, L., Chen, R., Yu, S.F., Zhang, J.X., Gong, H., Sun, H.D., and Fan, H.J.: Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: Low-temperature hydrothermal preparation and optical properties. ACS Nano 3, 3069 (2009).CrossRefGoogle ScholarPubMed
21.Kuykendall, T., Pauzauskie, P.J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P.D.: Crystallographic alignment of high density gallium nitride nanowire arrays. Nat. Mater. 3, 524 (2004).CrossRefGoogle ScholarPubMed
22.Ding, Y., Gao, P.X., and Wang, Z.L.: Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066 (2004).Google Scholar
23.Zhou, W.W., Cheng, C.W., Liu, J.P., Jia, X.T., Zhang, J.X., Gong, H., Ting, Yu., and Fan, H.J.: Epitaxial growth of branched α-Fe2O3/SnO2 nanoheterostructure with improved lithium-ion battery performance. Adv. Funct. Mater. (2011, DOI: 10.1002/adfm.201100088).Google Scholar
24.Cheng, C.W., Yan, B., Wong, S.M., Li, X.L., Zhou, W., Yu, T., Shen, Z.X., Yu, H.Y., and Fan, H.J.: Fabrication and SERS performance of silver nanoparticles-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2, 1824 (2010).CrossRefGoogle Scholar
25.Zhang, Z., Hossain, M.F., and Takahashi, T.: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energy 35, 8528 (2010).CrossRefGoogle Scholar
26.Banerjee, S., Mohapatra, S.K., Das, P.P., and Misra, M.: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).CrossRefGoogle Scholar
27.Lin, C.J., Lu, Y.T., Hsieh, C.H., and Chien, S.H.: Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting. Appl. Phys. Lett. 94, 113102 (2009).CrossRefGoogle Scholar