Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:31:21.759Z Has data issue: false hasContentIssue false

Solute-atom segregation is high-angle (002) twist boundaries in dilute Au–Pt alloys

Published online by Cambridge University Press:  03 March 2011

D. Udler
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
D.N. Seidman
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3108
Get access

Abstract

Solute-atom segregation is studied by Monte Carlo simulations for three high-angle symmetrical (002) twist boundaries in Au-1 at. % Pt and Pt-1 at. % Au alloys at T = 850 K. It complements our previous study, that focused mainly on low-angle boundaries in the same alloys. Solute enhancement occurs on the Pt-rich side of the phase diagram, while on the Au-rich side net depletion in solute is observed. Following the trend observed for low-angle boundaries, Au as a solute prefers the structural units of the perfect crystal type, while Pt as a solute is depleted at those sites. The solutc concentration at structural units depends on the planar fraction of those units in the boundary.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Seah, M. P. and Hondros, E. D., Proc. R. Soc. London A 355, 191 (1975).Google Scholar
2Balluffi, R. W., in Interfacial Segregation, edited by Johnson, W.C. and Blakely, J.M. (ASM, Metals Park, OH, 1979), p. 193.Google Scholar
3Hondros, E. D. and Seah, M. P., in Physical Metallurgy, edited by Cahn, R.W. and Haasen, P. (North Holland, Amsterdam, 1983), p. 856.Google Scholar
4Briant, C. L., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, 1992), p. 463.Google Scholar
5Foiles, S. M. and Seidman, D. N., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, 1992), p. 497.Google Scholar
6Kirchheim, R., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, 1992), p. 481.Google Scholar
7Hart, E. W., in Nature and Behavior of Grain Boundaries, edited by Hu, H. (Plenum, New York, 1972), p. 155; Cahn, J.W., J. Phys. (Paris) 43, C6-192 (1982).CrossRefGoogle Scholar
8Seidman, D. N., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, 1992), p. 58.Google Scholar
9Foiles, S. M., Phys. Rev. B. 40, 11502 (1989).CrossRefGoogle Scholar
10Seki, A., Seidman, D. N., Oh, Y., and Foiles, S. M., Acta Metall. Mater. 39, 3167, 3179 (1991).CrossRefGoogle Scholar
11Udler, D. and Seidman, D. N., Phys. Status Solidi (b) 172, 267 (1992); Udler, D. and Seidman, D.N., in Computational Methods in Materials Science, edited by Mark, J. E., Glicksman, M. E., and Marsh, S.P. (Mater. Res. Soc. Symp. Proc. 278, Pittsburgh, PA 1992), p. 223; Udler, D. and Seidman, D.N., Mater. Sci. Forum 126128, 165, 169 (1993); Mater. Sci. Forum 155158, 189 (1994).Google Scholar
12Udler, D. and Seidman, D. N., Mater. Sci. Forum 126128, 169(1993); Udler, D. and Seidman, D. N., Acta Metall. Mater. 42, 1959 (1994).Google Scholar
13Udler, D. and Seidman, D. N., Interface Sci. 3, 41 (1995).CrossRefGoogle Scholar
14Najafabadi, R., Srolovitz, D. J., Wang, H. Y., and LeSar, R., Acta Metall. Mater. 39, 3071 (1991); Wang, H. Y., Najafabadi, R., and Srolovitz, D.J., Philos. Mag. A 65, 625 (1992); Wang, H. Y., Najafabadi, R., Srolovitz, D. J., and LeSar, R., Interface Sci. 1, 31 (1993).CrossRefGoogle Scholar
15Wang, H. Y., Najafabadi, R., and Srolovitz, D. J., Philos. Mag. A 65, 625 (1992).CrossRefGoogle Scholar
16Wang, H. Y., Najafabadi, R., Srolovitz, D. J., and LeSar, R., Acta Metall. Mater. 41, 2553 (1993).Google Scholar
17Bristowe, P. D., Majid, I., Counterman, C. A., Wang, D., and Balluffi, R.W., Mater. Sci. Forum 126128, 25(1993); Majid, I., Counterman, C. A., Bristowe, P. D., and Balluffi, R. W., Acta Metall. 42, 3331 (1994).Google Scholar
18Menyhard, M., Yan, Min, and Vitek, V., Acta Metall. Mater. 42, 2783 (1994).CrossRefGoogle Scholar
19Schwartz, D., Vitek, V., and Sutton, A.P., Philos. Mag. A 51, 499 (1985); Schwartz, D., Vitek, V., and Bristowe, P. D., Acta Metall. 36, 675 (1988).CrossRefGoogle Scholar
20Udler, D. and Seidman, D. N., unpublished.Google Scholar
21Metropolis, N., Rosenbluth, M. N., Rosenbluth, A. W., Teller, A. H., and Teller, E., J. Chem. Phys. 21, 1087 (1953).CrossRefGoogle Scholar
22Foiles, S. M., in Surface Segregation and Related Phenomena, edited by Dowben, P.A. and Miller, A. (CRC Press, Boca Raton, FL, 1990), p. 79.Google Scholar
23Foiles, S. M., Phys. Rev. B 32, 7685 (1985); Daw, M.S., Phys. Rev. B 39, 7441 (1989).CrossRefGoogle Scholar
24Foiles, S. M., Baskes, M. I., and Daw, M.S., Phys. Rev. B 33, 7983(1986); Phys. Rev. B 37, 10378 (1988).CrossRefGoogle Scholar
25Daw, M. S., Foiles, S. M., and Baskes, M. I., Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
26Okamoto, H. and Massalski, T. B., Bull. Alloy Phase Diag. 6, 461 (1985).Google Scholar
27Majid, I. and Bristowe, P. D., Scripta Metall. 21, 1153 (1987); Majid, I., Bristowe, P. D., and Balluffi, R. W., Phys. Rev. B 40, 2779 (1989).CrossRefGoogle Scholar
28Udler, D. and Seidman, D. N., unpublished.Google Scholar
29Wynblatt, P. and Kuo, R. C., in Interfacial Segregation, edited by Johnson, W.C. and Blakely, J.M. (ASM, Metals Park, OH 1979), p. 115.Google Scholar
30Hofmann, S. and Lejcek, P., Scripta Metall. 25, 2259 (1989).CrossRefGoogle Scholar
31Burton, J. J. and Machlin, E. S., Phys. Rev. Lett. 37, 1433 (1981).CrossRefGoogle Scholar
32Stehle, H. and Seeger, A., Z. Phys. 146, 217 (1956); Seeger, A. and Haasen, P., Philos. Mag. 3, 470 (1958); Fleischer, R.L., Acta Metall. 11, 203 (1961).CrossRefGoogle Scholar
33Udler, D. and Seidman, D. N., Scripta Metall. Mater. 26, 449, 803 (1992).CrossRefGoogle Scholar
34Hilliard, J. E., Cohen, M., and Averbach, B. L., Acta Metall. 8, 26 (1960).CrossRefGoogle Scholar
35Seidman, D. N., in Encyclopedia of Materials Science and Engineering, edited by Bever, M.B. (Pergamon Press, Oxford, 1986), pp. 17441745; Seidman, D.N., in Encyclopedia of Advanced Materials, edited by Bloor, D., Brook, R. J., Flemings, M. C., Mahajan, S., and Cahn, R.W. (Pergamon Press, Oxford, 1994), p. 827.Google Scholar
36Wagner, R., Field-Ion Microscopy in Materials Science (Springer-Verlag, Berlin 1982).CrossRefGoogle Scholar
37Sakurai, T., Sakai, A., and Pickering, H.W., Atom-Probe Field-ion Microscopy and Its Applications (Academic Press, San Diego, CA, 1989).Google Scholar
38Miller, M. K. and Smith, G.D.W., Atom Probe Microanalysis: Principles and Applications to Materials Science (Materials Research Society, Pittsburgh, PA, 1989).Google Scholar
39Tsong, T. T., Atom-Probe Field-ion Microscopy (Cambridge University Press, Cambridge, England, 1990).CrossRefGoogle Scholar
40Cerezo, A., Godfrey, T. J., and Smith, G. D. W., Rev. Sci. Instrum. 59, 862 (1988).CrossRefGoogle Scholar
41Blavette, D., Deconihout, B., Bostel, A., Sarrau, J. M., Bouet, M., and Menand, A., Rev. Sci. Instrum. 64, 2911 (1993).CrossRefGoogle Scholar
42Krakauer, B. W., Hu, J. G., Kuo, S.-M., Mallick, R. L., Seki, A., Seidman, D. N., Baker, J. P., and Loyd, R., Rev. Sci. Instrum. 61, 3745 (1990).CrossRefGoogle Scholar
43Krakauer, B. W. and Seidman, D. N., Rev. Sci. Instrum. 63, 4071 (1992).CrossRefGoogle Scholar
44Seidman, D. N., Hu, J. G., Kuo, S-M., Krakauer, B. W., Oh, Y., and Seki, A., Coll. Phys. (Paris), 51, Cl-47 (1990).Google Scholar
45Seidman, D. N., Mater. Sci. Eng. A 137, 57 (1991).CrossRefGoogle Scholar
46Seidman, D. N., Krakauer, B. W., and Chan, D.K., Microscopy Soc. America 24(1), 375 (1994); Seidman, D.N., Krakauer, B. W., and Udler, D., J. Phys. Chem. Solids 55, 1035 (1994).Google Scholar
47Kuo, S. M., Seki, A., Oh, Y., and Seidman, D. N., Phys. Rev. Lett. 65, 199 (1990).CrossRefGoogle Scholar
48Hu, J. G. and Seidman, D. N., Phys. Rev. Lett. 65, 1615 (1990).CrossRefGoogle Scholar
49Hu, J. G. and Seidman, D. N., Scripta Metall. Mater. 26, 693 (1992).CrossRefGoogle Scholar
50Hu, J. G., Ph.D. Thesis, Northwestern University (1991).Google Scholar
51Krakauer, B. W. and Seidman, D. N., Phys. Rev. B 48, 6724 (1993).CrossRefGoogle Scholar
52Krakauer, B. W., Ph.D. Thesis, Northwestern University (1993).Google Scholar
53Krakauer, B. W. and Seidman, D. N., Mater. Sci. Forum 154156, 189 (1994).Google Scholar