Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T20:30:43.076Z Has data issue: false hasContentIssue false

Solid-state processing and phase development of bulk (MgO)w/BPSCCO high-temperature superconducting composite

Published online by Cambridge University Press:  31 January 2011

Y. S. Yuan
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
M. S. Wong
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
S. S. Wang
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
Get access

Abstract

The inherently weak mechanical properties associated with monolithic high-temperature superconductors (HTS) can be improved by introducing properly selected strong ceramic whiskers into the HTS materials. In this research, processing and superconducting properties of monolithic Pb-doped Bi-2223 (BPSCCO) and MgO whisker-reinforced BPSCCO HTS composite materials have been systematically studied. A solid-state processing method is successfully developed to fabricate the (MgO)w/BPSCCO composite. The HTS composite contains a dense and highly pure BPSCCO matrix phase with a preferred grain orientation, which is reinforced by MgO whiskers randomly oriented in the plane perpendicular to the hot-pressing direction. The HTS composite material is shown to exhibit excellent superconducting properties. For example, a transport Jc measured at 77 K in a zero field has been obtained to exceed 5000 A/cm2 in a (MgO)w/BPSCCO composite with 10% MgO whiskers by volume. Relationships among solid-state processing variables, HTS phase development, and superconducting properties of the monolithic BPSCCO and the HTS composite are established in the paper.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bednorz, J. G. and Müller, K. A., Z.Phys. B 64, 189193 (1986).CrossRefGoogle Scholar
2.Wu, M. K., Ashburn, J.R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y.Q., and Chu, C. W., Phys. Rev. Lett. 58, 908910 (1987).CrossRefGoogle Scholar
3.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209–L210 (1988).CrossRefGoogle Scholar
4.Sheng, Z. Z., Kiehl, W., Bennett, J., El Ali, A., Marsh, D., Mooney, G. D., Arammash, F., Smith, J., Viar, D., and Hermann, A.M., Appl. Phys. Lett. 52, 17381740 (1988).CrossRefGoogle Scholar
5.Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature 362, 226228 (1993).CrossRefGoogle Scholar
6.Tanaka, S., in Phenomenology and Applications of High-Temperature Superconductors, edited by Bedell, K. S., Inui, M., Meltzer, D., Schrieffer, J.R., and Doniach, S. (Addison-Wesley Publishing Company, New York, 1992).Google Scholar
7.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 397399 (1990).CrossRefGoogle Scholar
8.Dorri, B., Herd, K., Laskaris, E. T., Tkaczyk, J.E., and Lay, K. W., IEEE Trans. Magn. 27, 18581860 (1991).CrossRefGoogle Scholar
9.Thuries, E., Pham, V. D., Laumond, Y., Verhaege, T., Fevrier, A., Collet, M., and Bekhaled, M., IEEE Trans. Power Delivery 6, 801808 (1991).CrossRefGoogle Scholar
10.Goyal, A., Funkenbusch, P. D., Kroeger, D. M., and Burns, S. J., J. Appl. Phys. 71, 23632367 (1992).CrossRefGoogle Scholar
11.Ihm, M. K., Powell, B. R., and Bloink, R. L., J. Mater. Sci. 25, 16641674 (1990).CrossRefGoogle Scholar
12.Murayama, N., Kodama, Y., Sakaguchi, S., and Wakai, F., J. Mater. Res. 7, 3437 (1992).CrossRefGoogle Scholar
13.Chu, C-Y., Routbort, J.L., Chen, N., Biondo, A. C., Kupperman, D. S., and Goretta, K. C., Supercond. Sci. Technol. 5, 306312 (1992).CrossRefGoogle Scholar
14.Lee, D. F., “Effects of Normal-Phase Inclusions on the Processing and Properties of YBa2Cu3Ox Superconductor,” Ph. D. Dissertation, University of Houston (1992).Google Scholar
15.Jin, S., Sherwood, R. C., Tiefel, T. H., Kammlott, G. W., Fastnacht, R. A., Davis, M. E., and Zahurak, S. M., Appl. Phys. Lett. 52, 16281630 (1988).CrossRefGoogle Scholar
16.Goretta, K. C., Kullberg, M. L., Bar, D., Risch, G. A., and Routbort, J.L., Supercond. Sci. Technol. 4, 544547 (1991).CrossRefGoogle Scholar
17.Evans, A. G. and Marshall, D. B., in Fiber Reinforced Ceramic Composites, edited by Mazdiyasni, K. S. (Noyes Publications, Park Ridge, NJ, 1990), pp. 139.Google Scholar
18.Homeny, J., in Ceramic-Matrix Composites, edited by Warren, R. (Blackie and Son, Glasgow, 1992), pp. 245–270.Google Scholar
19.Wong, M.S., Miyase, A., Yuan, Y.S., and Wang, S.S., J. Am. Ceram. Soc. 77 (11), 28332840 (1994).CrossRefGoogle Scholar
20.Miyase, A., Yuan, Y. S., Wong, M. S., Schon, J., and Wang, S. S., Supercond. Sci. Technol. 8, 626637 (1995).CrossRefGoogle Scholar
21.Dou, S. X., Liu, H. K., Guo, S. J., Easterling, K. E., and Mikael, J., Supercond. Sci. Technol. 2, 274278 (1989).CrossRefGoogle Scholar
22.Wang, S. S., “HTS Composite Materials,” Sec. 5, in TCSUH HTS Technical Program Review,Texas Center for Superconductivity at the University of Houston, March 2628, 1991.Google Scholar
23.Soylu, B., Adamopoulos, N., Glowacka, D. M., and Evetts, J. E., Appl. Phys. Lett. 60, 31833185 (1992).CrossRefGoogle Scholar
24.Soylu, B., Adamopoulos, N., Clegg, W.J., Glowacka, D.M., and Evetts, J. E., IEEE Trans. Appl. Supercon. 3, 11311134 (1993).CrossRefGoogle Scholar
25.Ikeda, H., Yoshizaki, R., Yoshikawa, K., and Tomita, N., Jpn. J. Appl. Phys. 29, L430433 (1990).CrossRefGoogle Scholar
26.Yoshizaki, R., Ikeda, H., Yoshikawa, K., and Tomita, N., Jpn. J. Appl. Phys. 29, L753756 (1990).CrossRefGoogle Scholar
27.Paul, W., Heeb, B., Baumann, T. H., Guidolin, M., and Gauckler, L. J., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), pp. 383387.Google Scholar
28.Asano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., and Maeda, H., Jpn. J. Appl. Phys. 28, L595597 (1989).CrossRefGoogle Scholar
29.Dou, S. X., Song, K. H., Liu, H. K., Sorrell, C. C., Apperley, M. H., Gouch, A. J., Savvides, N., and Hensley, D. W., Physica C 160, 533537 (1989).CrossRefGoogle Scholar
30.Alford, N. M., Button, T. W., and Birchall, J. D., Supercon. Sci. Technol. 3, 17 (1990).CrossRefGoogle Scholar
31.Samsohov, G. V., The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982).CrossRefGoogle Scholar
32.Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, G., Thermal Conductivity: Metallic Elements and Alloys (IFI/Plenum New York–Washington, 1970).CrossRefGoogle Scholar
33.Levitt, A. P., Whisker Technology (Wiley-Interscience, New York, 1970).Google Scholar
34.Brubaker, B. D., United States Patent No. 3,711,599 (1973).Google Scholar
35.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mate Res. 11, 1827 (1996).CrossRefGoogle Scholar
36.Hayashi, Y., Kogure, H., and Gondo, Y., Jpn. J. Appl. Phys. 28, L21822184 (1989).CrossRefGoogle Scholar
37.Strobel, P., Toledano, J. C., Morin, D., Schneck, J., Vacquier, G., Monnereau, O., Primot, J., and Fournier, T., Physica C 201, 2742 (1992).CrossRefGoogle Scholar
38.Song, K-H., Sorrell, C. C., Dou, S. X., and Liu, H. K., J. Am. Ceram. Soc. 74, 25772582 (1991).CrossRefGoogle Scholar
39.Borofka, J. C., Hendrix, B. C., Attarwala, A. I., and Tien, J. K., J. Am. Ceram. Soc. 76, 10111016 (1993).CrossRefGoogle Scholar
40.Hendrix, B. C., Abe, T., Borofka, J. C., and Tien, J. K., Appl. Phys. Lett. 55, 313314 (1989).CrossRefGoogle Scholar
41.Chen, N., Biondo, A. C., Dorris, S. E., Goretta, K. C., Lanagan, M. T.,Youngdahl, C. A., and Poeppel, R. B., Supercond. Sci. Technol. 6, 674677 (1993).CrossRefGoogle Scholar
42.Murayama, N. and Vander Sande, J.B., Physica C 241, 235246 (1995).CrossRefGoogle Scholar