Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:31:04.491Z Has data issue: false hasContentIssue false

Solid-state amorphization in Al–Pt thin films

Published online by Cambridge University Press:  31 January 2011

J. M. Legresy
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
B. Blanpain
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

Solid-state amorphization is reported to occur in aluminum-platinum thin films. A uniform amorphous alloy layer was observed at the interface between aluminum and platinum layers for electron beam evaporated samples in an as-deposited state. For a pure aluminum overlayer deposited on top of a coevaporated Al–Pt amorphous alloy, the aluminum dissolves into the amorphous phase leading to a fully amorphous sample. In this last case the amorphization is nonuniform upon low-temperature anneals (T < ≃2 200 °C) and gives rise to hole formation in the aluminum overlayer. Direct observations of this phenomenon during in situ annealing of the thin films in a transmission electron microscope were carried out.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murarka, S. P., Blech, I. A., and Levinstein, H. J., J. Appl. Phys. 47, 5175 (1976).CrossRefGoogle Scholar
2Colgan, E. G., J. Appl. Phys. 62, 1224 (1987).CrossRefGoogle Scholar
3Nastasi, M., Hung, L. S., and Mayer, J. W., Appl. Phys. Lett. 43, 831 (1983).CrossRefGoogle Scholar
4Zhao, X. A., Ma, E., Yang, H. Y., and Nicolet, M. A., Thin Solid Films 153, 379 (1987).Google Scholar
5Colgan, E. G., Li, C. Y., and Mayer, J. W., J. Mater. Res. 2, 557 (1987).CrossRefGoogle Scholar
6Colgan, E. G., Li, C. Y., and Mayer, J. W., Appl. Phys. Lett. 51, 424 (1987).Google Scholar
7Cliff, G. and Lorimer, G. W., J. Microsc. 103m, 203 (1975).Google Scholar
8Hirsch, P., Howie, A., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Krieger, New York, 1977).Google Scholar
9Legresy, J. M. (unpublished results).Google Scholar
10Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic, New York, 1978).Google Scholar
11Barbour, J. C., Sickafus, K., and Nastasi, M., J. Vac. Sci. Technol. A 3, 1895 (1985).Google Scholar
12Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).CrossRefGoogle Scholar
13Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., in Handbook of A uger Electron Spectroscopy (Physical Electronics Industries, Eden Prairie, MN, 1976), 2nd ed., pp. 1315.Google Scholar
14Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
15Schwartz, R. B. and Jonhson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
16Miedema, A. R., Chatel, P. F. de, and Boer, F. R. de, Physica B 100, 1 (1980).Google Scholar
17Colgan, E. G., Ph.D. thesis, Cornell University (1987).Google Scholar