Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T07:22:51.470Z Has data issue: false hasContentIssue false

Solid solutions in the Ba2Y1−xCuxWO6−y system

Published online by Cambridge University Press:  29 June 2016

A. García-Ruiz
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, a.p. 20-364, 01000 México D. F., Mexico
Bokhimi
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, a.p. 20-364, 01000 México D. F., Mexico
M. Portilla
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, a.p. 70-197, 01000 México D.F., Mexico
Get access

Abstract

The crystalline structure of the Ba2Y1−xCuxWO6−y system was obtained from x-ray diffraction measurements as a function of copper concentration. Five different x regions are observed, four of which correspond to solid solutions and lie at x ≤ 0.75. The crystalline structure of the phases at these copper concentrations has cubic symmetry with lattice parameters between 0.8382 and 0.8275 nm. At 0.75 < x ≤ 1.0 the samples are a mixture of two phases. In this study we have identified the existence of only two stoichiometric compounds: Ba8Y3CuW4O24 with a cubic crystalline structure with space group Pm3m and lattice parameter of 0.8350(1) nm, and Ba2CuWO6 with a crystalline tetragonal structure and space group I4/mmm and lattice parameters a = 0.5566(1) nm and c = 0.8634(1) nm. The crystalline structure at all copper concentrations is based in the ordered perovskite structure. The samples show electrical insulator behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yvon, K. and François, M., Z. Phys. B 76, 413 (1989).CrossRefGoogle Scholar
2.Raveau, B., Michel, C., and Hervieu, M., Chem. Scripta 28, 51 (1988); Sheng, Z.Z., Gu, D.X., Xin, Y., Pederson, D.O., Finger, L.W., Hadidiacos, C.G., and Hazen, R.M., Modem Phys. Lett. B (1991, in press).Google Scholar
3.Pei, S., Jorgensen, J.D., Dabrowski, B., Hinks, D.G., Richards, D.R., Mitchell, A.W., Newsam, J.M., Sinha, S.K., Vaknina, D., and Jacobson, A.J., Phys. Rev. B 41, 4126 (1990).CrossRefGoogle Scholar
4.Chaudhari, P., Koch, R.H., Laibowitz, R.B., McGuire, T.R., and Gambino, R.J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
5.Brandie, C.D. and Fratello, V.J., J. Mater. Res. 5, 2160 (1990).CrossRefGoogle Scholar
6.Bokhimi, , Physica C 175, 119 (1991).CrossRefGoogle Scholar
7.Brynste, I., Acta Chem. Scand. 44, 855 (1990).Google Scholar
8.Katz, L. and Ward, R., Inorg. Chem. 3, 205 (1964).CrossRefGoogle Scholar
9.Kapyshev, A.G., Ivanova, V.V., and Venevtsev, Yu.N., Sov. Phys. Dokl. 11, 195 (1966).Google Scholar
10.Blasse, G., J. Inorg. Nucl. Chem. 27, 993 (1965).CrossRefGoogle Scholar
11.Balashov, V.L., Lykova, L.N., Kovba, L.M., and Evdokimova, A.A., Russ. J. Inorg. Chem. 30, 1210 (1985).Google Scholar
12.Bokhimi, , Portilla, M., and Pérez, R., to be published in Proc. of the International C-MRS'90 meeting, Beijing China, 06 18-22, 1990.Google Scholar
13.SOCABIM (1986); SARL-9 bis, Villa du Bel-Air, 75012 Paris, France.Google Scholar
14.Yvon, K., Jeitschko, W., and Parthe, E., J. Appl. Cryst. 10, 73 (1977).CrossRefGoogle Scholar
15.Bokhimi, , Powder Diffraction (1991, in press).Google Scholar