Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T21:51:46.998Z Has data issue: false hasContentIssue false

Solid krypton in MgO

Published online by Cambridge University Press:  31 January 2011

M. Grant Norton
Affiliation:
Department of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
C. Barry Carter
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Elizabeth L. Fleischer
Affiliation:
The Materials Research Society, Pittsburgh, Pennsylvania 15237
James W. Mayer
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
Get access

Abstract

Recent work by the authors has been extended to demonstrate the formation of solid krypton in single-crystal magnesium oxide. The solid inclusions, which were formed by ion implantation at room temperature, have been identified by electron diffraction. The formation of solid noble gas inclusions at room temperature indicates that they were under a high pressure. This pressure was determined, based on the measured lattice parameter, to be 1.7 GPa.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Burnett, P.J. and Page, T. F., Radiat. Eff. 97, 123 (1986).CrossRefGoogle Scholar
2White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).CrossRefGoogle Scholar
3vomFelde, A., Fink, J., Miiller-Heinzerling, Th., Pfuger, J., Scheerer, B., Linker, G., and Kaletta, D., Phys. Rev. Lett. 53, 922 (1984).Google Scholar
4Templier, C., Jaouen, C., Riviere, J. P., Delafond, J., and Grilhe, J., Comptes Rendus Acad. Sci. Ser. 299, 613 (1984).Google Scholar
5Norton, M. G., Fleischer, E. L., Hertl, W., Carter, C. B., Mayer, J. W., and Johnson, E., Phys. Rev. B 43, 9291 (1991).Google Scholar
6Fleischer, E.L., Norton, M.G., Zaleski, M.A., Hertl, W., Carter, C.B., and Mayer, J.W., J. Mater. Res. 6, 1905 (1991).Google Scholar
7Norton, M. G., Fleischer, E. L., Hertl, W., Carter, C. B., and Mayer, J. W., Nucl. Instrum. Methods B59/60, 1215 (1991).Google Scholar
8Desoyer, J. C., Templier, C., Delafond, J., and Garem, H., Nucl. Instrum. Methods B19/20, 450 (1987).Google Scholar
9Evans, J.H. and Mazey, D.J., J. Phys. F 15, LI (1985).Google Scholar
10Templier, C., Garem, H., and Rivière, J.P., Philos. Mag. A 53, 667 (1986).Google Scholar
11Evans, J.H. and Mazey, D.J., Scripta Metall. 19, 621 (1985).Google Scholar
12Templier, C., Garem, H., Riviere, J.P., and Delafond, J., Nucl. Instrum. Methods B18, 24 (1986).Google Scholar
13Norton, M.G., Summerfelt, S.R., and Carter, C.B., Appl. Phys. Lett. 56, 2246 (1990).Google Scholar
14McHargue, C.J., Farlow, G. C., Begun, G. M., Williams, J.M., White, C. W., Appleton, B. R., Sklad, P. S., and Angellini, P., Nucl. Instrum. Methods B 16, 212 (1986).Google Scholar
15McHargue, C. J., Defects and Diffusion Forum 57–58, 359 (1988).Google Scholar
16Fleischer, E. L., Ph.D. Thesis, Cornell University (1991).Google Scholar
17Evans, J.H. and Mazey, D.J., J. Nucl. Mater. 138, 176 (1986).CrossRefGoogle Scholar
18Birtcher, R. C. and Jäger, W., Ultramicroscopy 22, 267 (1987).Google Scholar
19Ronchi, C., J. Nucl. Mater. 96, 314 (1981).CrossRefGoogle Scholar
20Simon, F.E. and Glatzel, G., Z. Anorg. Alleg. Chem. 178, 309 (1929).Google Scholar
21Babb, S.E. Jr., Rev. Mod. Phys. 35, 400 (1963).Google Scholar