Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T16:57:50.286Z Has data issue: false hasContentIssue false

Soft-chemical method for fabrication of SnO–TiO2 nanocomposites with enhanced photocatalytic activity

Published online by Cambridge University Press:  31 May 2013

Qiwen Yan
Affiliation:
Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China
Jingyu Wang*
Affiliation:
Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China
Xijiang Han
Affiliation:
Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China
Zhihong Liu*
Affiliation:
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The present work reports a soft-chemical pathway for preparing SnO–TiO2 composite nanocrystallites as photocatalyst through co-hydrolysis of tetrabutyl titanate and tin (II) chloride followed by acidic peptization of the hydrolysate under mild conditions. The procedure is simple and straightforward, from which a well-dispersed semitransparent hydrosol sample is obtained. The freestanding nanocrystallites observed in the as-prepared composite show diameters of 3–5 nm. TiO2 nanoparticles have almost entirely transformed into anatase phase, and the trace amounts of Sn in existence are mainly found in SnO crystals with tetragonal structure. The photocatalytic activity of the SnO–TiO2 composites is confirmed through the photodegradation of methyl blue dye under visible light irradiation (λ > 420 nm). As a p-type semiconductor, the incorporated SnO effectively improves the photocatalytic activity of TiO2 through promoting the separation of photo-generated charge carriers, inhibiting their recombination, and facilitating the reduction of O2 by the photo-generated electrons.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, X.B. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Chen, X.B., Shen, S.H., Guo, L.J., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).CrossRefGoogle ScholarPubMed
Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).CrossRefGoogle Scholar
Choi, W.Y., Termin, A., and Hoffmann, M.R.: The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
Zhang, X., Wang, S.T., and Wang, Z.S.: Effect of metal-doping in TiO2 on fill factor of dye-sensitized solar cells. Appl. Phys. Lett. 99, 113503 (2011).CrossRefGoogle Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
Huang, D.E., Liao, S.J., Quan, S.Q., Liu, L., He, Z.J., Wan, J.B., and Zhou, W.B.: Preparation and characterization of anatase N-F-codoped TiO2 sol and its photocatalytic degradation for formaldehyde. J. Mater. Res. 22, 2389 (2007).CrossRefGoogle Scholar
Zou, C.W., Yan, X.D., Chen, R.Q., Alyamani, A., Wu, Z.Y., and Gao, W.: The annealing effect on the microstructures and phase transformation of the TiO2 layer in ZnO/TiO2 core-shell nanostructures. Cryst. Growth Des. 11, 367 (2011).CrossRefGoogle Scholar
Su, D., Wang, J.Y., Tang, Y.P., Liu, C., Liu, L.F., and Han, X.J.: Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 47, 4231 (2011).CrossRefGoogle ScholarPubMed
Cheng, C.W., Tay, Y.Y., Hng, H.H., and Fan, H.J.: Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybrid nanowires. J. Mater. Res. 26, 2254 (2011).CrossRefGoogle Scholar
Geurts, J., Rau, S., Richter, W., and Schmotte, F.J.: SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and x-ray diffraction studies. Thin Solid Films 121, 217 (1984).CrossRefGoogle Scholar
Blanca, E.L.P.Y., Svane, A., Christensen, N.E., Rodriguez, C.O., Cappannini, O.M., and Moreno, M.S.: Calculated static and dynamic properties of beta-Sn and SnO compounds. Phys. Rev. B 48, 15712 (1993).CrossRefGoogle Scholar
Lefebvre, I., Szymanski, M.A., Olivier-Fourcade, J., and Jumas, J.C.: Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 58, 1896 (1998).CrossRefGoogle Scholar
Rao, M.M., Jayalaksmi, M., Reddy, B.R., Madhavendra, S.S., and Kantam, M.L.: Recognizing nano SnO as an electrode material for electrochemical double layer capacitors. Chem. Lett. 34, 712 (2005).CrossRefGoogle Scholar
Han, Z.H., Guo, N., Li, F.Q., Zhang, W.Q., Zhao, H.Q., and Qian, Y.T.: Solvothermal preparation and morphological evolution of stannous oxide powders. Mater. Lett. 48, 99 (2001).CrossRefGoogle Scholar
Christensen, N.E., Svane, A., and Blanca, E.L.P.Y.: Electronic and structural properties of SnO under pressure. Phys. Rev. B 72, 014109 (2005).CrossRefGoogle Scholar
Giefers, H., Porsch, F., and Wortmann, G.: Kinetics of the disproportionation of SnO. Solid State Ionics 176, 199 (2005).CrossRefGoogle Scholar
Macwan, D.P., Dave, P.N., and Chaturvedi, S.: A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci. 46, 3669 (2011).CrossRefGoogle Scholar
Nikkanen, J-P., Kanerva, T., and Mantyla, T.: The effect of acidity in low-temperature synthesis of titanium dioxide. J. Cryst. Growth 304, 179 (2007).CrossRefGoogle Scholar
Wang, Y.W., Zhang, L.Z., Deng, K.J., Chen, X.Y., and Zou, Z.G.: Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C 111, 2709 (2007).CrossRefGoogle Scholar
Gu, D.E., Lu, Y., Yang, B.C., and Hu, Y.D.: Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun. 21, 2453 (2008).CrossRefGoogle Scholar
Wang, J.Y., Zhao, H.T., Liu, X.R., Li, X.D., Xu, P., and Han, X.J.: Formation of Ag nanoparticles on water-soluble anatase TiO2 clusters and the activation of photocatalysis. Catal. Commun. 10, 1052 (2009).CrossRefGoogle Scholar
Wang, J.Y., Han, X.J., Zhang, W., He, Z.K., Wang, C., Cai, R.X., and Liu, Z.H.: Controlled growth of monocrystalline rutile nanoshuttles in anatase TiO2 particles under mild conditions. CrystEngComm 11, 564 (2009).CrossRefGoogle Scholar
Wang, J.Y., Han, X.J., Liu, C., Zhang, W., Cai, R.X., and Liu, Z.H.: Adjusting the crystal phase and morphology of titania via a soft chemical process. Cryst. Growth Des. 10, 2185 (2010).CrossRefGoogle Scholar
Liu, G.M., Li, X.Z., Zhao, J.C., Hidaka, H., and Serpone, N.: Oxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 34, 3982 (2000).CrossRefGoogle Scholar
Gonbeau, D., Guimon, C., Pfister-Guillouzo, G., Levasseur, A., Meunier, G., and Dormoy, R.: XPS study of thin-films of titanium oxysulfides. Surf. Sci. 254, 81 (1991).CrossRefGoogle Scholar
Fan, J.C.C. and Goodenough, J.B.: X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48, 3524 (1977).CrossRefGoogle Scholar
Choe, Y-S., Chung, J.H., Kim, D.S., Kim, G.H., and Baik, H.K.: Phase transformation and morphological evolution of ion-beam sputtered tin oxide films on silicon substrate. Mater. Res. Bull. 34, 1473 (1999).CrossRefGoogle Scholar
Martel, A., Caballero-Briones, F., Bartolo-Perez, P., Iribarren, A., Castro-Rodriguez, R., Zapata-Navarro, A., and Pena, J.L.: Chemical and phase composition of SnOx: F films grown by DC reactive sputtering. Surf. Coat. Technol. 148, 103 (2001).CrossRefGoogle Scholar
Dai, Z.R., Pan, Z.W., and Wang, Z.L.: Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc. 124, 8673 (2002).CrossRefGoogle ScholarPubMed
Giefers, H., Porsch, T.F., and Wortmann, G.: Thermal disproportionation of SnO under high pressure. Solid State Ionics 176, 1327 (2005).CrossRefGoogle Scholar
Humphrey, G.L. and O’Brien, C.J.: Heats of formation of stannic and stannous oxides from combustion calorimetry. J. Am. Chem. Soc. 75, 2805 (1953).CrossRefGoogle Scholar
Brewer, L.: Thermodynamic properties of the oxides and their vaporization processes. Chem. Rev. 52, 1 (1953).CrossRefGoogle Scholar
Du, J.M., Zhang, J.L., Liu, Z.M., Han, B.X., Jiang, T., and Huang, Y.: Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir 22, 1307 (2006).CrossRefGoogle Scholar
Zhang, W.F., Zhang, M.S., Yin, Z., and Chen, Q.: Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261 (2000).CrossRefGoogle Scholar
Yu, J.G., Ma, T.T., and Liu, S.W.: Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13, 3491 (2011).CrossRefGoogle ScholarPubMed
Yan, X.L., Ohno, T., Nishijima, K., Abe, R., and Ohtani, B.: Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 429, 606 (2006).CrossRefGoogle Scholar
Liu, G.M., Wu, T.X., Zhao, J.C., Hidaka, H., and Serpone, N.: Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ. Sci. Technol. 33, 2081 (1999).CrossRefGoogle Scholar
Bae, E. and Choi, W.: Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol. 37, 147 (2003).CrossRefGoogle ScholarPubMed
Li, H.B., Duan, X.C., Liu, G.C., and Liu, X.Q.: Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J. Mater. Sci. 43, 1669 (2008).CrossRefGoogle Scholar