Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T22:57:06.958Z Has data issue: false hasContentIssue false

Soft lithography-mediated microscale patterning of silica on diverse substrates

Published online by Cambridge University Press:  31 January 2011

Randall Butler
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Derek Hansford*
Affiliation:
Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210
Rajesh Naik
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Ohio 45433
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have developed a soft lithography-based process to create microscale patterns of silica on a diverse array of substrates. A sacrificial polymer layer was first patterned using a micromolding technique. A peptide was adsorbed on the substrate and the sacrificial layer was removed. The patterned peptide template then catalyzed the deposition of silica from a silicic acid solution. With this procedure, we have created both continuous and discontinuous silica patterns on metallic, ceramic, and polymer substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Perry, C.C. and Keeling-Tucker, T.: Biosilicification: The role of the inorganic matrix., J. Biol. Inorg. Chem. 5, 537 (2000).CrossRefGoogle Scholar
2.Morse, D.E.: Silicon biotechnology: Harnessing biological silica production to construct new materials. Trends Biotechnol. 17, 230 (1999).CrossRefGoogle Scholar
3.Tacke, R.: Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew. Chem. Int. Ed. 38, 3015 (1999).3.0.CO;2-X>CrossRefGoogle ScholarPubMed
4.Vrieling, E.G., Beelen, T.P.M., van Santen, R.A., and Gieskes, W.W.C.: Diatom silicon biomineralization as an inspirational source of new approaches to silica production., J. Biotechnol. 70, 39 (1999).CrossRefGoogle Scholar
5.Poulsen, N., Sumper, M., and Kröger, N.: Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Nat. Acad. Sci. USA. 100, 12075 (2003).CrossRefGoogle ScholarPubMed
6.Kröger, N., Deutzmann, R., Bergsdorf, C., and Sumper, M.: Species-specific polyamines from diatoms control silica morphology. Proc. Nat. Acad. Sci. USA. 97, 14133 (2000).CrossRefGoogle ScholarPubMed
7.Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E.: Silicatein a: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA. 95, 6234 (1998).CrossRefGoogle ScholarPubMed
8.Kröger, N., Deutzmann, R., and Sumper, M.: Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129 (1999).CrossRefGoogle ScholarPubMed
9.Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., and Morse, D.E.: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA. 96, 361 (1999).CrossRefGoogle ScholarPubMed
10.Patwardhan, S.V. and Clarson, S.J.: Silicification and biosilicification: Part 1. Formation of silica structures utilizing a cationically charged synthetic polymer at neutral pH and under ambient conditions. Polym. Bull. 48, 367 (2002).CrossRefGoogle Scholar
11.Patwardhan, S.V., Mukherjee, N., and Clarson, S.J.: Effect of process parameters on the polymer mediated synthesis of silica at neutral pH. Silicon Chem. 1, 47 (2002).CrossRefGoogle Scholar
12.Patwardhan, S.V., Mukherjee, N., and Clarson, S.J.: The use of poly-L-lysine to form novel silica morphologies and the role of polypeptides in biosilicification. J. Inorg. Organomet. Polym. 11, 193 (2001).CrossRefGoogle Scholar
13.Rodríguez, F., Glawe, D.D., Naik, R.R., Hallinan, K.P., and Stone, M. O.: Study of the chemical and physical influences upon in vitro peptide-mediated silica formation. Biomacromolecules 5, 261 (2004).CrossRefGoogle ScholarPubMed
14.Coradin, T. and Livage, J.: Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf., B 21, 329 (2001).CrossRefGoogle ScholarPubMed
15.Coradin, T., Durupthy, O., and Livage, J.: Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification. Langmuir 18, 2331 (2002).CrossRefGoogle Scholar
16.Xia, Y. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).3.0.CO;2-G>CrossRefGoogle ScholarPubMed
17.Bernard, A., Renault, J.P., Michel, B., Bosshard, H.R., and Delamarche, E.: Microcontact printing of proteins. Adv. Mater. 12, 1067 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
18.Fang, A., Ng, H., Su, X., and Li, S.F.Y.: Soft-lithography-mediated submicrometer patterning of self-assembled monolayer of hemoglobin on ITO surfaces. Langmuir 16, 5221 (2000).CrossRefGoogle Scholar
19.Aizenberg, J., Black, A.J., and Whitesides, G.M.: Oriented growth of calcite controlled by self-assembled monolayers of functional-ized alkanethiols supported on gold and silver. J. Am. Chem. Soc. 121, 4500 (1999).CrossRefGoogle Scholar
20.Aizenberg, J., Black, A.J., and Whitesides, G.M.: Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495 (1999).CrossRefGoogle Scholar
21.Butler, R.T., Ferrell, N.J., and Hansford, D.J.: Spatial and geometrical control of silicification using a patterned poly-L-lysine template. Appl. Surf. Sci. 252, 7337 (2006).CrossRefGoogle Scholar
22.Coffman, E.A., Melechko, A.V., Allison, D.P., Simpson, M.L., and Doktycz, M.J.: Surface patterning of silica nanostructures using bio-inspired templates and directed synthesis. Langmuir 20, 8431 (2004).CrossRefGoogle ScholarPubMed
23.Kim, D.J., Lee, K., Lee, T.G., Shon, H.K., Kim, W., Paik, H., and Choi, I.S.: Biomimetic micropatterning of silica by surface-initiated polymerization and microcontact printing. Small 1, 992 (2005).CrossRefGoogle ScholarPubMed
24.Guan, J., Chakrapani, A., and Hansford, D.J.: Polymer microparticles fabricated by soft lithography. Chem. Mater. 17, 6227 (2005).CrossRefGoogle Scholar
25.Guan, J., Ferrell, N., Lee, L.J., and Hansford, D.J.: Fabrication of polymeric microparticles for drug delivery by soft lithography. Biomaterials 27, 4034 (2006).CrossRefGoogle ScholarPubMed
26.Ferrell, N., Woodard, J., and Hansford, D.: Fabrication of polymer microstructures for MEMS: Sacrificial layer micromolding and patterned substrate micromolding. Biomed. Microdevices 9, 815 (2007).CrossRefGoogle ScholarPubMed
27.Jackman, R.J., Duffy, D.C., Ostuni, E., Willmore, N.D., and Whitesides, G.M.: Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewet-ting. Anal. Chem. 70, 2280 (1998).CrossRefGoogle Scholar
28.Ferrell, N. and Hansford, D.: Fabrication of micro and nanoscale polymer structures by soft lithography and spin dewetting. Macromol. Rapid Commun. 28, 966 (2007).CrossRefGoogle Scholar
29.Brott, L.L., Naik, R.R., Pikas, D.J., Kirkpatrick, S.M., Tomlin, D.W., Whitlock, P.W., Clarson, S.J., and Stone, M.O.: Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413, 291 (2001).CrossRefGoogle ScholarPubMed
30.Sandhage, K.H., Dickerson, M.B., Huseman, P.M., Caranna, M.A., Clifton, J.D., Bull, T.A., Heibel, T.J., Overton, W.R., and Schoenwaelder, M.E.A.: Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429 (2002).3.0.CO;2-C>CrossRefGoogle Scholar