Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T10:34:12.837Z Has data issue: false hasContentIssue false

Size effect on mechanical properties in high-order hierarchically nanotwinned metals

Published online by Cambridge University Press:  21 January 2019

Jicheng Li
Affiliation:
Department of Mechanical & Civil Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA; Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China; and Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang, Sichuan 621999, China
Ke-Gang Wang*
Affiliation:
Department of Mechanical & Civil Engineering, Florida Institute of Technology, Melbourne, Florida 32901, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Theoretical models for the strength and ductility of high-order hierarchically nanotwinned metals are developed, and especially analytical expressions of mechanical parameters with various influencing factors are deduced. Furthermore, the size effect on mechanical properties is analyzed based on these mechanism-based plasticity models, wherein the effects of twin spacing and grain size on the strength and ductility are discussed systemically. Related analysis demonstrates that the twin spacing plays an important role. Through adjusting the twin spacing of the primary layer of twin lamellae and optimizing the combination of twin spacing of the high-order layers, expected mechanical properties with high strength and high ductility could be achieved. Besides, the grain size also has a significant effect, and the reduction in grain size still induces a positive effect on the strength, whereas a negative effect on the ductility. Finally, a material design approach for the optimization of comprehensive mechanical properties is suggested.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc., London, Sect. B 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
Kumar, K.S., Suresh, S., and Van Swygenhoven, H.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).CrossRefGoogle Scholar
Zhu, T.T., Bushby, A.J., and Dunstan, D.J.: Materials mechanical size effects: A review. Mater. Technol. 23, 193 (2008).CrossRefGoogle Scholar
Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).CrossRefGoogle ScholarPubMed
Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
Zhu, T. and Gao, H.: Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater. 66, 843 (2012).CrossRefGoogle Scholar
Sun, L., He, X., and Lu, J.: Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts. npj Comput. Mater. 4, 6 (2018).CrossRefGoogle Scholar
Lu, L., Shen, Y., Chen, X., Qian, L., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).CrossRefGoogle ScholarPubMed
Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., and Lu, K.: Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).CrossRefGoogle Scholar
Shan, Z.W., Lu, L., Minor, A.M., Stach, E.A., and Mao, S.X.: The effect of twin plane spacing on the deformation of copper containing a high density of growth twins. JOM 60, 71 (2008).CrossRefGoogle Scholar
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).CrossRefGoogle ScholarPubMed
Lu, L., Dao, M., Zhu, T., and Li, J.: Size dependence of rate-controlling deformation mechanisms in nanotwinned copper. Scr. Mater. 60, 1062 (2009).CrossRefGoogle Scholar
Lu, L., Zhu, T., Shen, Y., Dao, M., Lu, K., and Suresh, S.: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 57, 5165 (2009).CrossRefGoogle Scholar
You, Z.S., Lu, L., and Lu, K.: Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater. 59, 6927 (2011).CrossRefGoogle Scholar
Qu, S., An, X.H., Yang, H.J., Huang, C.X., Yang, G., Zang, Q.S., Wang, Z.G., Wu, S.D., and Zhang, Z.F.: Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586 (2009).CrossRefGoogle Scholar
Tao, N.R. and Lu, K.: Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scr. Mater. 60, 1039 (2009).CrossRefGoogle Scholar
Liddicoat, P.V., Liao, X.Z., Zhao, Y.H., Zhu, Y.T., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).CrossRefGoogle ScholarPubMed
Müllner, P. and King, A.H.: Deformation of hierarchically twinned martensite. Acta Mater. 58, 5242 (2010).CrossRefGoogle Scholar
Cong, D.Y., Zhang, Y.D., Esling, C., Wang, Y.D., Lecomte, J.S., Zhao, X., and Zuo, L.: Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 59, 7070 (2011).CrossRefGoogle Scholar
Kou, H.N., Lu, J., and Li, Y.: High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518 (2014).CrossRefGoogle ScholarPubMed
Wei, Y.J., Li, Y.Q., Zhu, L.C., Liu, Y., Lei, X.Q., Wang, G., Wu, Y.X., Mi, Z.L., Liu, J.B., Wang, H.T., and Gao, H.J.: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).CrossRefGoogle ScholarPubMed
Shin, Y.A., Yin, S., Li, X.Y., Lee, S., Moon, S., Jeong, J., Kwon, M., Yoo, S.J., Kim, Y.M., Zhang, T., Gao, H.J., and Oh, S.H.: Nanotwin-governed toughening mechanism in hierarchically structured biological materials. Nat. Commun. 7, 10772 (2016).CrossRefGoogle ScholarPubMed
Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O.: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).CrossRefGoogle ScholarPubMed
Koyama, M., Zhang, Z., Wang, M., Ponge, D., Raabe, D., Tsuzaki, K., Noguchi, H., and Tasan, C.C.: Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055 (2017).CrossRefGoogle ScholarPubMed
Liu, X., Sun, L., Zhu, L., Liu, J., Lu, K., and Lu, J.: High-order hierarchical nanotwins with superior strength and ductility. Acta Mater. 149, 397 (2018).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U. S. A. 104, 3031 (2007).CrossRefGoogle ScholarPubMed
Jin, Z.H., Gumbsch, P., Albe, K., Ma, E., Lu, K., Gleiter, H., and Hahn, H.: Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 56, 1126 (2008).CrossRefGoogle Scholar
Shabib, I. and Miller, R.E.: Deformation characteristics and stress-strain response of nanotwinned copper via molecular dynamics simulation. Acta Mater. 57, 4364 (2009).CrossRefGoogle Scholar
Li, X.Y., Wei, Y.J., Lu, L., Lu, K., and Gao, H.J.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).CrossRefGoogle ScholarPubMed
Wei, Y.J.: Scaling of maximum strength with grain size in nanotwinned fcc metals. Phys. Rev. B 83, 132104 (2011).CrossRefGoogle Scholar
Zhou, H.F., Qu, S.X., and Yang, W.: Toughening by nano-scaled twin boundaries in nanocrystals. Modell. Simul. Mater. Sci. Eng. 18, 065002 (2010).CrossRefGoogle Scholar
Zhou, H.F., Li, X.Y., Qu, S.X., Yang, W., and Gao, H.J.: A jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Lett. 14, 5075 (2014).CrossRefGoogle ScholarPubMed
Sun, L.G., He, X.Q., and Lu, J.: Atomistic simulation study on twin orientation and spacing distribution effects on nanotwinned Cu films. Philos. Mag. 95, 3467 (2015).CrossRefGoogle Scholar
Yuan, F.P. and Wu, X.L.: Formation sequences and roles of multiple deformation twins during the plastic deformation in nanocrystalline fcc metals. Mater. Sci. Eng., A 580, 58 (2013).CrossRefGoogle Scholar
Yuan, F.P. and Wu, X.L.: Atomistic scale fracture behaviours in hierarchically nanotwinned metals. Philos. Mag. 93, 3248 (2013).CrossRefGoogle Scholar
Yuan, F.P. and Wu, X.L.: Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals. J. Appl. Phys. 113, 203516 (2013).CrossRefGoogle Scholar
Yuan, F.P., Chen, L., Jiang, P., and Wu, X.L.: Twin boundary spacing effects on shock response and spall behaviors of hierarchically nanotwinned fcc metals. J. Appl. Phys. 115, 063509 (2014).CrossRefGoogle Scholar
Yuan, F.P. and Wu, X.L.: Size effect and atomistic deformation mechanisms of hierarchically nanotwinned fcc metals under nanoindentation. J. Mater. Sci. 50, 7557 (2015).CrossRefGoogle Scholar
Sun, L.G., He, X.Q., Zhu, L.L., and Lu, J.: Two softening stages in nanotwinned Cu. Philos. Mag. 94, 4037 (2014).CrossRefGoogle Scholar
Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W., and Zhu, Y.T.: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632 (2003).CrossRefGoogle Scholar
Ni, S., Wang, Y., Liao, X., Figueiredo, R., Li, H., Ringer, S., Langdon, T., and Zhu, Y.: The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Mater. 60, 3181 (2012).CrossRefGoogle Scholar
Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Mathaudhu, S.N., and Kecskes, L.J.: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95, 031909 (2009).CrossRefGoogle Scholar
Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Kecskes, L.J., and Mathaudhu, S.N.: Dislocation-twin interactions in nanocrystalline fcc metals. Acta Mater. 59, 812 (2011).CrossRefGoogle Scholar
Wang, Y.B. and Sui, M.L.: Atomic-scale in situ observation of lattice dislocations passing through twin boundaries. Appl. Phys. Lett. 94, 021909 (2009).CrossRefGoogle Scholar
Lu, N., Du, K., Lu, L., and Ye, H.Q.: Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper. Nat. Commun. 6, 7648 (2015).CrossRefGoogle ScholarPubMed
Chassagne, M., Legros, M., and Rodney, D.: Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu, and Ni. Acta Mater. 59, 1456 (2011).CrossRefGoogle Scholar
Yu, K.Y., Bufford, D., Sun, C., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat. Commun. 4, 1377 (2013).CrossRefGoogle ScholarPubMed
Wang, L., Lu, Y., Kong, D., Xiao, L., Sha, X., Sun, J., Zhang, Z., and Han, X.: Dynamic and atomic-scale understanding of the twin thickness effect on dislocation nucleation and propagation activities by in situ bending of Ni nanowires. Acta Mater. 90, 194 (2015).CrossRefGoogle Scholar
Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).CrossRefGoogle Scholar
Dao, M., Lu, L., Shen, Y., and Suresh, S.: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54, 5421 (2006).CrossRefGoogle Scholar
Jerusalem, A., Dao, M., Suresh, S., and Radovitzky, R.: Three-dimensional model of strength and ductility of polycrystalline copper containing nanoscale twins. Acta Mater. 56, 4647 (2007).CrossRefGoogle Scholar
Mirkhani, H. and Joshi, S.P.: Crystal plasticity of nanotwinned microstructures: A discrete twin approach for copper. Acta Mater. 59, 5603 (2011).CrossRefGoogle Scholar
Zhang, X., Romanov, A.E., and Aifantis, E.C.: A simple physically based phenomenological model for the strengthening/softening behavior of nanotwinned copper. J. Appl. Mech. 82, 121005 (2015).CrossRefGoogle Scholar
Zhu, L.L., Ruan, H.H., Li, X.Y., Dao, M., Gao, H.J., and Lu, J.: Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544 (2011).CrossRefGoogle Scholar
Zhu, L.L., Kou, H.N., and Lu, J.: On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals. Appl. Phys. Lett. 101, 081906 (2012).CrossRefGoogle Scholar
Zhu, L.L., Qu, S.X., Guo, X., and Lu, J.: Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. J. Mech. Phys. Solids 76, 162 (2015).CrossRefGoogle Scholar
Li, J., Ni, Y., Soh, A.K., and Wu, X.L.: Strong crack blunting by hierarchical nanotwins in ultrafine/nano-grained metals. Mater. Res. Lett. 3, 190 (2015).CrossRefGoogle Scholar
Kocks, U.F. and Mecking, H.: The physics and phenomenology of strain hardening. Prog. Mater. Sci. 48, 171 (2003).CrossRefGoogle Scholar
Capolungo, L., Cherkaoui, M., and Qu, J.: On the elastic-viscoplastic behavior of nanocrystalline materials. Int. J. Plast. 23, 561 (2007).CrossRefGoogle Scholar
Gao, C.Y. and Zhang, L.Z.: Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int. J. Plast. 32–33, 121 (2012).CrossRefGoogle Scholar
Yasnikov, I.S., Estrin, Y., and Vinogradov, A.: What governs ductility of ultrafine-grained metals? A microstructure based approach to necking instability. Acta Mater. 141, 18 (2017).CrossRefGoogle Scholar