Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:16:36.523Z Has data issue: false hasContentIssue false

Sintering behavior and dielectric properties of pyrochlore Pb2FeWO6.5

Published online by Cambridge University Press:  03 March 2011

Chung-Hsin Lu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Nobuyasu Mizutani*
Affiliation:
Department of Inorganic Materials, Tokyo Institute of Technology, Tokyo 152, Japan
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

Pyrochlore-type Pb2FeWO6.5 is difficult to be sintered without applied pressure at temperatures lower than its decomposition temperature. Through hot pressing or hot isostatic pressing processes, densification of specimens is greatly enhanced; moreover, grain growth during sintering is effectively suppressed. Densified Pb2FeWO6.5 exhibits paraelectric characteristic from −135°to −2 °C with low dielectric constants and low dissipation factors. The dielectric constants show rather weak dependence of temperature and frequency.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yonezawa, M., Am. Ceram. Soc. Bull. 62, 1375 (1983).Google Scholar
2Bokov, V. A. and Myl'nikova, I. E., Sov. Phys. Solid State 3, 613 (1961).Google Scholar
3Shrout, T. R., Swartz, S. L., and Haun, M. J., Ceram. Soc. Bull. 63, 808 (1984).Google Scholar
4Lejeune, M. and Boilot, J. P., Ceram. Int. 9, 119 (1983).CrossRefGoogle Scholar
5Lejeune, M. and Boilot, J. P., Ceram. Int. 8, 99 (1982).CrossRefGoogle Scholar
6Lejeune, M. and Boilot, J. P., Am. Ceram. Soc. Bull. 64, 679 (1985).Google Scholar
7Chen, J. and Harmer, M. P., J. Am. Ceram. Soc. 73, 68 (1990).CrossRefGoogle Scholar
8Swartz, S. L., Shrout, T. R., Schulze, W. A., and Cross, L. E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
9Guha, J. P. and Anderson, H. U., J. Am. Ceram. Soc. 69, C287 (1986).Google Scholar
10Lu, C. H., Shinozaki, K., Mizutani, N., and Kato, M., J. Ceram. Soc. Jpn. 97, 119 (1989).CrossRefGoogle Scholar
11Lu, C. H., Ishizawa, N., Shinozaki, K., Mizutani, N., and Kato, M., J. Mater. Sci. Lett. 7, 1078 (1988).CrossRefGoogle Scholar
12Lu, C. H., Shinozaki, K., Kato, M., and Mizutani, N., J. Mater. Sci. 26, 1009 (1991).CrossRefGoogle Scholar
13Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 501.Google Scholar
14Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 927.Google Scholar
15Shrout, T. R. and Swartz, S. L., Mater. Res. Bull. XVIII, 663 (1983).CrossRefGoogle Scholar
16Subramanian, M. A. and Sleight, A. W., Mater. Res. Bull. XXI, 727 (1986).CrossRefGoogle Scholar
17Lambachri, A., Manier, M., Mercurio, J. P., and Frit, B., Mater. Res. Bull. XXIII, 571 (1988).CrossRefGoogle Scholar
18Bokov, V. A., Myl'nikova, I. E., and Smolenskii, G., Sov. Phys. JETP 15, 447 (1962).Google Scholar